994 resultados para 125-780D


Relevância:

100.00% 100.00%

Publicador:

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Large serpentinite seamounts are common in the forearc regions between the trench axis and the active volcanic fronts of the Mariana and Izu-Bonin intraoceanic arcs. The seamounts apparently form both as mud volcanoes, composed of unconsolidated serpentine mud flows that have entrained metamorphosed ultramafic and mafic rocks, and as horst blocks, possibly diapirically emplaced, of serpentinized ultramafics partially draped with unconsolidated serpentine slump deposits and mud flows. The clayand silt-sized serpentine recovered from three sites on Conical Seamount on the Mariana forearc region and from two sites on Torishima Forearc Seamount on the Izu-Bonin forearc region is composed predominantly of chrysotile, brucite, chlorite, and clays. A variety of accessory minerals attest to the presence of unusual pore fluids in some of the samples. Aragonite, unstable at the depths at which the serpentine deposits were drilled, is present in many of the surficial cores from Conical Seamount. Sjogrenite minerals, commonly found as weathering products of serpentine resulting from interaction with groundwater, are found in most of the samples. The presence of aragonite and carbonate-hydroxide hydrate minerals argues for interaction of the serpentine deposits with fluids other than seawater. There are numerous examples of sedimentary serpentinite deposits exposed on land that are very similar to the deposits recovered from the serpentine seamounts drilled on ODP Leg 125. We suggest that Conical Seamount may be a type locality for the study of in situ formation of many of these sedimentary serpentinite bodies. Further, we suggest that both the deposits drilled on Conical Seamount and on Torishima Forearc Seamount demonstrate that serpentinization can continue in situ within the seamounts through interaction of the serpentine deposits with both seawater and subduction-related fluids.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Serpentinite seamounts in the Mariana forearc have been explained as diapirs rising from the Benioff zone. This hypothesis predicts that the serpentinites should have low strengths as well as low densities relative to the surrounding rocks. Drilling during Leg 125 showed that the materials forming Conical Seamount in the Mariana forearc and Torishima Forearc Seamount in the Izu-Bonin forearc are water-charged serpentinite muds of density <2 g/cm**3. Wykeham-Farrance torsion-vane tests showed that they are plastic solids with a rheology that bears many similarities to the idealized Cam clay soil model and is well described by critical-state soil mechanics. The serpentinite muds have ultimate strengths of 1.3 to 273.7 kPa and yield strengths of approximately 1.0 to 50 kPa. These muds thus are orders of magnitude weaker than salt and are, in fact, comparable in density and strength to common deep-sea clay muds. Such weak and low-density materials easily become diapiric. Serpentinite muds from the summit of Conical Seamount are weaker and more ductile than those on its flanks or on Torishima Forearc Seamount. Moreover, the summit muds do not contain the pronounced pure- and simple-shear fabrics that characterize those on the seamount flanks. The seamounts are morphologically similar to shield volcanoes, and anastomosing serpentinite debris flows descending from their summits are similar in map view to pahoehoe flows. These morphologic features, together with the physical properties of the muds and their similarities to other oceanic muds and the geochemistry of the entrained waters, suggest that many forearc serpentinite seamounts are gigantic (10-20 km wide, 1.5-2.0 km high) mud volcanoes that formed by the eruption of highly liquid serpentinite muds. Torishima Forearc Seamount, which is blanketed by more ìnormalî pelagic/volcaniclastic sediment, has probably been inactive since the Miocene. Conical Seamount, which seems to consist entirely of serpentinite mud and is venting fresh water of unusual chemistry from its summit, is presently active. Muds from the flanks of Conical Seamount are stronger and more brittle than those from the summit site, and muds from Torishima Forearc Seamount are stronger yet; this suggests that the serpentinite debris flows are compacted and dewatered as they mature. The shear fabrics probably result from downslope creep and flow, but may also be inherited.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Refractory spinel peridotites were drilled during Leg 125 from two diapiric serpentinite seamounts: Conical Seamount in the Mariana forearc (Sites 778-780) and Torishima Forearc Seamount (Sites 783-784) in the Izu-Ogasawara forearc. Harzburgite is the predominant rock type in the recovered samples, with subordinate dunite; no lherzolite was found. The harzburgite is diopside-free to sparsely diopside-bearing, with modal percentages of diopside that range from 0% to 2%. Spinels in the harzburgites are chrome-rich (Cr/[Cr + Al] = 0.38-0.83; Fe3+/[Fe3+ + Cr + Al] = 0.01-0.07). Olivine and orthopyroxene are magnesian (Mg# = 0.92). Discrete diopsides reveal extreme depletion of light rare earth elements. Primary hornblende is rare. The bulk major-element chemistry shows low average values of TiO2 (trace), Al2O3 (0.55%) and CaO (0.60%), but high Mg# (0.90). These rocks are more depleted than the abyssal peridotites from the mid-oceanic ridge. They are interpreted as residues of extensive partial melting (= 30%), of which the last episode was in the mantle wedge, probably associated with the generation of incipient island-arc magma, including boninite and/or arc-tholeiite. These depleted peridotites probably represent the residues of melting within mantle diapirs that developed within the mantle wedge.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Serpentinite clasts and muds erupted from Conical Seamount, Mariana forearc, show substantial enrichment in boron (B) and 11B (delta11B up to +15?) relative to mantle values. These elevated B isotope signatures result from chemical exchange with B-rich pore fluids that are upwelling through the seamount. If the trends of decreasing delta11B with slab depth shown by cross-arc magmatic suites in the Izu and Kurile arcs of the western Pacific are extended to shallow depths (~25 km), they intersect the inferred delta11B of the slab-derived fluids (+13x) at Conical Seamount. Simple mixtures of a B-rich fluid with a high delta11B and B-poor mantle with a low delta11B are insufficient to explain the combined forearc and arc data sets. The B isotope systematics of subduction-related rocks thus indicate that the fluids evolved from downgoing slabs are more enriched in 11B than the slab materials from which they originate. Progressively lower delta11B in arc lavas erupted above deep slabs reflects both the progressive depletion of 11B from the slab and progressively greater inputs of mantle-derived B. This suggests that the slab releases 11B-enriched fluids from the shallowest levels to depths greater than 200 km.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

For the first time, short-chain organic acids are described from serpentine-associated interstitial waters. In this geologic setting, formate typically dominates the organic acid assemblage. Within the forearc setting, the organic acids are associated only with unconsolidated serpentine. Their existence may be the result of alkaline hydrolysis of ester linkages in organic matter that has been entrained in the serpentine diapir.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Pore waters were collected from nine sites during Leg 125 of the Ocean Drilling Program (ODP). The first four sites (778-781) were drilled in the Mariana forearc on and near Conical Seamount, an active serpentine "mud volcano" located about 80 km behind the trench axis and 120 km in front of the active island arc. The last five sites (782-786) were drilled in the Izu-Bonin forearc between the trench and the outer arc high. Pore waters from the five sites from both areas that penetrated serpentine silts (Sites 778,779,780,783, and 784) are discussed in detail by Mottl (this volume). Here we report analyses of the pore waters from all nine sites for Li, Rb, Sr, Ba, Mn, B, and the sulfur isotopic ratio of dissolved sulfate. Sampling methods and results of analyses for major and minor species determined aboard ship were presented by Fryer, Pearce, Stokking, et al. (1990, doi:10.2973/odp.proc.ir.125.1990).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

At St Thomas' Hospital, we have developed a computer program on a Titan graphics supercomputer to plan the stereotactic implantation of iodine-125 seeds for the palliative treatment of recurrent malignant gliomas. Use of the Gill-Thomas-Cosman relocatable frame allows planning and surgery to be carried out at different hospitals on different days. Stereotactic computed tomography (CT) and positron emission tomography (PET) scans are performed and the images transferred to the planning computer. The head, tumour and frame fiducials are outlined on the relevant images, and a three-dimensional model generated. Structures which could interfere with the surgery or radiotherapy, such as major vessels, shunt tubing etc., can also be outlined and included in the display. Catheter target and entry points are set using a three-dimensional cursor controlled by a set of dials attached to the computer. The program calculates and displays the radiation dose distribution within the target volume for various catheter and seed arrangements. The CT co-ordinates of the fiducial rods are used to convert catheter co-ordinates from CT space to frame space and to calculate the catheter insertion angles and depths. The surgically implanted catheters are after-loaded the next day and the seeds left in place for between 4 and 6 days, giving a nominal dose of 50 Gy to the edge of the target volume. 25 patients have been treated so far.