993 resultados para 1200 a.c. - 650 a.c
Resumo:
Sugarcane bagasse ash (SCBA) is a residue resulting from the burning of bagasse in boilers in the sugarcane/alcohol industry. SCBA has a very high silica concentration and contains aluminum, iron, alkalis and alkaline earth oxides in smaller amounts. In this work, the properties of sintered ceramic bodies were evaluated based on the concentration of SCBA, which replaced non-plastic material. The ash was mixed (up to 60 wt%) with a clayed raw material that is used to produce roof tiles. Prismatic probes were pressed and sintered at different temperatures (up to 1200 degrees C). Technological tests of ceramic probes showed that the addition of ash has little influence on the ceramic properties up to 1000 C. X-ray diffraction and thermal analysis data showed that, above this temperature the ash participates in the sintering process and in the formation of new important phases. The results reported show that the reuse of SCBA in the ceramic industry is feasible. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Samples of lanthanum Ortoferrites doped with strontium were synthesized in a single phase by the sol-gel method. Two samples were prepared, one by varying the concentration of strontium in lanthanum ortoferrites La1−xSrxFeO3−δ with (0 ≤ x ≤ 0.5), and another batch of samples of type, La1/3Sr2/3FeO3−δ, now varying only the temperature of calcination. Our samples were obtained by Pechini method and sintered in air and oxygen atmospheric. Their crystal structures were determined by x-ray diraction (XRD), scanning electron microscopy (SEM), where we observed that the samples (0 ≤ x ≤ 0.3) have orthorhombic symmetry and the volume of the single cell decreases with the increasing of concentration of strontium. For x = 0.5 it is only observed the simple phase when that is sintered in O2 atmospheric. Their magnetic characteristics were obtained by the Mössbauer spectroscopy and magnetic measurements. The magnetization measurements for samples La1−xSrxFeO3−δ with (0 ≤ x ≤ 0.5) revealed that the magnetization decreases with increasing concentration of strontium, but for the sample x = 0.4 the magnetization shows a high coercive field and a ferrimagnetic behavior, which is attributed to a small amount of strontium hexaferrite. As for the samples La1/3Sr2/3FeO3−δ calcined between 800 oC e 1200 oC. The hysteresis curves revealed two distinct behaviors: an declined antiferromagnetic behavior (Canted) for samples calcined between 800 oC and 1000 oC and a paramagnetic behavior for the samples calcined at 1100 oC e 1200 o C. Thermal hysteresis and sharp peaks around the Néel temperature (TN), over the curves of specific heat as a function of temperature was only observed in calcined samples with 1100 oC and 1200 oC. This eect is attributed to the charge ordering. These results indicate that the charge ordering occurs only in the samples without oxygen deficiency. Magnetic measurements as a function of temperature are also in agreement with this interpretation
Resumo:
Lead zirconate powder, with Zr/Ti ratio of 50/50 was prepared by polymeric precursor method and doped with 3, 5 and 7 mol% of Sr+2 Or Ba+2, as well as by 0.2 to 5 mol% of Nb+5. The powder was calcined at 750 degrees C by 4 hours and milled during 1.5 h in isopropilic alcohol. Powders were characterized by surface area measurements (BET method), by infrared spectroscopy and by X-ray diffraction to characterize the crystal structure. Isostatically pressed samples were sintered in a dilatometer furnace by using a constant heating rate of 10 degrees C/min from ambient to 1200 degrees C. Synthetic air and air with water vapor were used as atmospheres. Both Sr+2 and Ba+2 substitute Pb+2 and favor the formation of rhombohedral phase. Otherwise, Nb+5 substitute preferentially Zr+4 favoring tetragonal phase. The concentration of dopants and the atmosphere influence the densification and the microstructure of the PZT, which alters the dielectric and piezoelectric properties of the ceramics.
Resumo:
Silica particles were obtained by addition of diluted soluble sodium silicate in sodium 1,2 bis (2-ethylhexyloxycarbonyl)-1-ethenesulfonate reverse microemulsions, in which aqueous phase was nitric acid solution and the water/surfactant ratio (W) was 5 or 10. Products, whether washed or not, were dried at 100 degrees C and suspended in different solvents: heptane, water, kerosene or pentane for making SEM measurements. Thermal treatments of washed silica samples were carried out at 900 degrees C and 1200 degrees C. Silica particles of sizes from 1 to 10 mu m were obtained at room temperature without changing their shape due to thermal treatment and crystallization. SEM micrographs show hollow particles suggesting that silica preferably polymerizes on microemulsion droplet interface where ionic strength of nitric acid aqueous solution is favourable for silica polymerization reaction. (C) 1999 Elsevier B.V. B.V. All rights reserved.
Resumo:
In this work the La1.8Eu0.2O3 coating on nanometric alpha-alumina, alpha-Al2O3@La1.8Eu0.2O3, was prepared for the first time by a soft chemical method. The powder was heat-treated at 100, 400, 800 and 1200 degrees C for 2 h. X-ray powder diffraction patterns (XRD), transmission electronic microscopy (TEM), emission and excitation spectra, as well as Eu3+, lifetime were used to characterize the material and to follow the changes in structure as the heating temperature increases. The Eu3+ luminescence data revealed the characteristic transitions D-5(0) --> F-7(J) (J = 0, 1 and 3) of Eu3+ at around 580, 591 and 613 nm, respectively, when the powders were excited by 393 nm. The red color of the samples changed to yellow when the powder was annealed at 1200 degrees C. The decrease in the (D-5(0) --> F-7(2))/(D-5(0) --> F-7(1)) ratio from around 5.0 for samples heated at lower temperatures to 3.1 for samples annealed at 1200 degrees C is consistent with a higher symmetry of the Eu3+ at higher temperature. The excitation spectra of the samples also confirms this change by the presence of a more intense and broad band at around 317 nm, instead of the presence of the characteristic peak at 393 mn, which corresponds to the F-7(0) --> L-5(6) transition of the Eu3+. The lifetimes of the D-5(0) --> F-7(2) transition of Eu3+ for the samples heat-treated at 100, 400, 800 and 1200 degrees C was evaluated as 0.57, 0.72, 0.43 and 0.31 ms, respectively. (C) 2006 Elsevier Ltd. All fights reserved.
Resumo:
Reactive pure and manganese-doped (5% and 10 at.%) ceria nanosized powders were prepared by the polymeric precursor technique. Physical properties of powder materials were studied by X-ray diffraction, nitrogen adsorption, and diffuse reflectance infrared Fourier transform spectroscopy. Characterization of powder compacts after fast firing at 1200 degrees C for 5 min was carried out by scanning electron microscopy and impedance spectroscopy measurements. The bulk apparent density of sintered pellets was determined for pellets of different compositions sintered at 1200 degrees C. A gradual decrease of the particle size occurs with increasing doping content. Relatively high values of apparent density were obtained after fast firing doped specimens at 1200 degrees C. DRIFT spectra evidence that a fraction of Mn ions was segregated onto particles surface. The electrical resistivity of sintered pellets reveals different mechanisms of conduction depending on the Mn content. (C) 2005 Elsevier B.V All rights reserved.
Resumo:
Solid-state compounds of general formula LnL(3)center dot nH(2)O, where Ln represents heavier lanthanides and yttrium and L is 2-chlorobenzylidenepyruvate, have been synthesized. Chemical analysis, simultaneous thermogravimetry-differential analysis (TG-DTA), differential scanning calorimetry (DSC), X-ray powder diffractometry, elemental analysis and infrared spectroscopy have been employed to characterize and to study the thermal behaviour of these compounds in dynamic air atmosphere.On heating these compounds decompose in four (Gd, Tb, Ho to Lu, Y) or five (Eu, Dy) steps. They lose the hydration water in the first step and the thermal decomposition of the anhydrous compounds up to 1200 degrees C occurs with the formation of the respective oxide, Tb4O7 and Ln(2)O(3) (Ln=Eu, Gd, Dy to Lu and Y) as final residue. The dehydration enthalpies found for these compounds (Eu, to Lu and Y) were: 65.77, 55.63, 86.89, 121.65, 99.80, 109.59, 131.02, 119.78, 205.46 and 83.11 kJ mol(-1), respectively.
Resumo:
Aluminium Hydroxides were precipitated from Aluminium Nitrate and Ammonium Hydroxide, at the temperatures 64 degrees C (hot) and 25 degrees C (cold), under the pH conditions 5, 7 and 9. The samples were characterized by X-Ray Diffraction (XRD) and Differential Thermal Analysis (DTA). The hydroxide precipitated at pH 9 and 64 degrees C is built up by pseudoboehmite and a minor share of others apparently amorphous hydroxides. The crystallinity of the hot yielded pseudoboehmite diminishes with the pH. The crystallite size was evaluated as about 40 Angstrom for the best crystallized sample. The cold precipitated product is apparently composed by amorphous or very poorly crystallized hydroxides. Upon heating, the cold precipitated hydroxides, and the low pH and hot precipitated hydroxide, release their structural water before the occurrence, about 430 degrees C, of the transition of the pseudoboehmite to gamma-alumina, and exhibit a shifting (towards low temperature side) and a broadening in the peak of the transition to alpha-alumina, which occurs at 1200 degrees C in the pseudoboehmite pattern. The yielded pseudo-boehmite peptized by HNO3, addition and gelified by evaporation in a critical concentration approximately 0.17 gcm(-3).
Resumo:
A 9.5/65/35 PLZT ceramic with a Pb-0.905 La-0.095 (Zr-0.65 Ti-0.35)(0.976) O-3 + 35 w% PbO formula was prepared using the Pechini method for powder preparation and two-step sintering in an oxygen atmosphere. Thr first step consisted of sintering at 1200 degrees C for 4 h with slow heating and cooling rates. The second step consisted of hot pressing at 1200 degrees C for 3 h, with slow heating and cooling rates and pressing pressures of 20 MPa (initial pressure) and 40 MPa (at sintering temperature). Investigations were made of the powder phase formation and powder morphology, i.e. The structure of sintered and hot-pressed PLZT ceramics. SEM microstructural analyses were carried out on the sintering and hot-pressing processes. (C) 2000 Elsevier B.V. Ltd and Techna S.r.l. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This paper presents a study on the influence of milling condition on workpiece surface integrity focusing on hardness and roughness. The experimental work was carried out on a CNC machining center considering roughing and finishing operations. A 25 mm diameter endmill with two cemented carbide inserts coated with TiN layer were used for end milling operation. Low carbon alloyed steel Cr-Mo forged at 1200 degrees C was used as workpiece on the tests. Two kinds of workpiece conditions were considered, i.e. cur cooled after hot forging and normalized at 950 degrees C for 2 h. The results showed that finishing operation was able to significantly decrease the roughness by at least 46% without changing the hardness. on the other hand, roughing operation caused an increase in hardness statistically significant by about 6%. The machined surface presented deformed regions within feed marks, which directly affected the roughness. Surface finish behavior seems to correlate to the chip ratio given the decrease of 25% for roughing condition, which damaged the chip formation. The material removal rate for finishing operation 41% greater than roughing condition demonstrated to be favorable to the heat dissipation and minimized the effect on material hardness.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The phase equilibria in the FeO-Fe2O3-ZnO system have been experimentally investigated at oxygen partial pressures between metallic iron saturation and air using a specially developed quenching technique, followed by electron probe X-ray microanalysis (EPMA) and then wet chemistry for determination of ferrous and ferric iron concentrations. Gas mixtures of H-2, N-2, and CO2 or CO and CO2 controlled the atmosphere in the furnace. The determined metal cation ratios in phases at equilibrium were used for the construction of the 1200 degrees C isothermal section of the Fe-Zn-O system. The univariant equilibria between the gas phase, spinel, wustite, and zincite was found to be close to pO(2) = 1 center dot 10(-8) atm at 1200 degrees C. The ferric and ferrous iron concentrations in zincite and spinel at equilibrium were also determined at temperatures from 1200 degrees C to 1400 degrees C at pO(2) = 1 center dot 10(-6) atm and at 1200 degrees C at pO(2) values ranging from 1 center dot 10(-4) to 1 center dot 10(-8) atm. Implications of the phase equilibria in the Fe-Zn-O system for the formation of the platelike zincite, especially important for the Imperial Smelting Process (ISP), are discussed.
Resumo:
The authors describe rock art dating research in Australia using the oxalate method While the array of dates obtained (which range from c. 1200 to c. 25000 BP) show a satisfactory correlation with other archaeological data, there are mismatches which suggest that some motifs were often imitated by later artists, and/or that the mineral accretions continued to form periodically, perhaps continuously, as a regional phenomenon over a long period of time.