997 resultados para 119-737A


Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Although scientific evidence prior to that from ODP Leg 119 indicates the presence of an ice sheet on East Antarctica by at least the earliest Oligocene, the question as to the size and stability of that initial ice sheet is still contested. Current hypotheses include (1) the presence of a small ice sheet in the earliest Oligocene with stepwise growth during the Neogene, (2) the presence of a continental-sized ice sheet in the late middle Eocene with no major evidence of subsequent deglaciation, and (3) the presence of glacial ice in the earliest Oligocene with a major ice sheet during the mid-Oligocene, followed by growth and decay of several ice sheets with characteristics similar to the temperate ice sheets of the Pleistocene of North America but with changes over a longer time scale (millions of years vs. 100,000 yr). Principal results from Leg 119 suggest the presence of significant late middle and late Eocene glaciation in East Antarctica and the presence of a continental-size ice sheet in East Antarctica during the earliest Oligocene. Although the Leg 119 results provide only glimpses of the Neogene glacial history of East Antarctica, they do provide evidence of fluctuations in the extent of the ice sheet and the waxing and waning of glaciers across the Prydz Bay shelf during the later part of the late Miocene and Pliocene.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Geochemical investigations were carried out on 19 discrete ash layers and on 42 dispersed ash accumulations in Oligocene to Pleistocene sediments from Sites 736, 737, 745, and 746 of ODP Leg 119 (Kerguelen Plateau in the southern Indian Ocean). The chemical data obtained from more than 500 single-grain glass analyses allow the characterization of two dominant petrographic rock series. The first consists of transitional- to alkali-basalts, the second mainly of trachytes with subordinated alkali-rhyolites and rhyolites. Chemical correlation with possible source areas indicates that the tephra layers from the northern Kerguelen Plateau Sites 736 and 737 were probably erupted from the nearby Kerguelen Islands. The investigated ash layers clearly reflect the Oligocene to recent changes in the composition of the volcanic material recorded from the Kerguelen Islands. The dispersed ashes from Sites 745 and 746 in the Australian-Antarctic Basin display almost the same range in chemical compositions as those from the north. Heard Island and other sources may have contributed to their formation, in addition to the Kerguelen Islands. Dispersed ash of calc-alkaline composition is most probably derived from the South Sandwich island arc, indicating sea-ice rafting as an important mechanism of transport.