993 resultados para 115-706A
Resumo:
A comparison of 50 basalts recovered at Sites 706, 707, 713, and 715 along the Reunion hotspot trace during Ocean Drilling Program Leg 115 in the Indian Ocean shows that seafloor alteration had little effect on noble metal concentrations (Au, Pd, Pt, Rh, Ru, and Ir), determined by inductively coupled plasma-mass spectrometry (ICP-MS), which generally tend to decrease with magma evolution. Their compatible-element behavior may be related to the precipitation of Ir-Os-based alloys, chromite, sulfides, and/or olivine and clinopyroxene in some combination. The simplest explanation indicates silicate control of concentrations during differentiation. Basalts from the different sites show varying degrees of alkalinity. Noble metal abundances tend to increase with decreasing basalt alkalinity (i.e., with increasing percentages of mantle melting), indicating that the metals behave as compatible elements during mantle melting. The retention of low-melting-point Au, Pd, and Rh in mantle sulfides, which mostly dissolve before significant proportions of Ir-Os-based alloys melt, explains increasing Pd/Ir ratios with decreasing alkalinity (increasing melting percentages) in oceanic basalts. High noble metal concentrations in Indian Ocean basalts (weighted averages of Au, Pd, Rh, Pt, Ru, and Ir in Leg 115 basalts are 3.2, 8.1, 0.31, 7.3, 0.22, and 0.11 ppb, respectively), compared with basalts from some other ocean basins, may reflect fundamental primary variations in upper- mantle noble metal abundances
Resumo:
The occurrences of ten datum events for the Quaternary and top Pliocene nannofossils are identified at nine Leg 115 sites. A quantitative investigation of Paleogene nannofossils in 470 samples selected from 11 holes at 9 sites yielded 197 taxa, including one new species and 10 unidentified taxa that are likely to be new species. Regional differences in the timing of some biostratigraphically important events are recognized, and a set of datum events useful for biostratigra- phy in the tropical Indian Ocean is presented. Biogeographical differences are minor for Paleogene cores from the tropical sites (Sites 707-716); however, the Quaternary and late early Oligocene floras observed at the two subtropical sites (Sites 705 and 706) differ significantly from the corresponding floras of the tropical sites. Bathymetrically controlled dissolution is recognized by the reduction of species diversity in the Paleogene flora. Selective dissolution of nannofossils is also evidenced by the percentage reduction of three holococcolith taxa, Lanternithus minutus, Zygrhablithus bijugatus, and Holococcolith type A as well as by the increase of Coccolithus pelagicusand Cribrocentrum reticulatumin the deeper sites.
Resumo:
Basement rocks were recovered at four sites on Leg 115 along the Reunion hotspot track in the western Indian Ocean. Plate tectonic reconstructions indicate that the drilled structures formed in three different volcanic environments. Sites 706 and 713 from the eastern side of the Saya de Malha Bank and the northern end of the Chagos Bank, respectively, are on a large volcanic platform analogous to Iceland on the Mid-Atlantic Ridge. Lavas at Site 707 on the northwestern side of the Saya de Malha Bank erupted during the early stages of rifting of the Seychelles from India. Basalts from Site 715 were erupted onto an isolated oceanic island that was distant from ocean ridges and continents much as Reunion Island is today. Many of the rocks were examined in thin section and found to be primarily augite-plagioclase basalts with minor olivine and rare opaque oxides. Site 715 is unusual in that it contains a variety of basalts including olivine-rich and aphyric Fe-Ti basalts. At each of the four sites the rocks were grouped into chemical types (units) on the basis of ship- board bulk-rock analyses and at least one thin section from each chemical unit was analyzed by electron microprobe. The plagioclase and augite chemistry reflects the bulk-rock chemistry and, in general, these minerals were in equilibrium with their host magmas at the time the basalts were quenched. Olivine was rarely preserved, but where it is still present it also appears to have crystallized in equilibrium with the host magma. At three of the drill sites plagioclase phenocrysts or megacrysts that crystallized from a primitive magma are also present. The one site (715) that does not contain these primitive plagioclase phenocrysts is also the site that appears to have been influenced the least by ocean- ridge or Deccan-type magmas. Site 715, furthermore, has a mineralogy that is dominated by olivine as compared with the plagioclase-rich lavas of the other sites.
Resumo:
Ocean Drilling Program Leg 115 was designed to study Neogene sedimentation history in the western Indian Ocean Basin as well as the Cenozoic evolution of the Reunion hotspot. We describe the paleomagnetic analysis of the sediments recovered on this leg, focusing on the sites that provided the most readily interpretable data: Sites 706, 709, 710, and 711. Sediments from Site 706 show no reversals but appear to give a reliable reversed polarity primary direction, judged on the basis of the demagnetization behavior of individual samples as well as from the results of a fold test formulated by comparing the two holes drilled at this site. Magnetic polarity stratigraphy in sediments from Site 709 can be deduced in two limited sections of Pliocene-Pleistocene and Oligocene-Miocene age. Sediments recovered at Site 710 (and, to a lesser extent, Site 711) render a relatively continuous magnetic polarity stratigraphy that spans most of the Neogene and adds significantly to the body of data available to address problems in Miocene geochronology. In addition to these magnetostratigraphic results, the paleomagnetism of these sediments can be used to determine paleolatitude. Using the most reliable inclination measurements from Sites 706, 710, and 711, we compared paleomagnetic estimates of paleolatitude with estimates derived from a hotspot-based absolute plate motion model. Our data, which covers the interval since 33 Ma, shows that paleolatitudes calculated with the geocentric axial dipole assumption are in general accord with the hotspot predictions. However, a correction for the long-term nondipole field brings the paleomagnetic results into even better agreement with plate motions that are based on the fixity of African hotspots.
Resumo:
Analyses of the Sr2+ concentrations of interstitial fluids obtained from sediments squeezed during Leg 115 were used to estimate the rates and total amount of recrystallization of biogenic carbonates. The total amount of recrystallization calculated using this method varies from less than 1 % in sediments at Site 706 to more than 40% at Site 709 in sediments of 47 Ma. Five of the sites drilled during Leg 115 (Sites 707 through 711) were drilled in a depth transect within a restricted geographic area so that theoretically they received similar amounts of sediment input. Of these, the maximum rate of recrystallization occurred in the upper 50 m of Site 710 (3812 m). The amount of recrystallization decreased with increasing water depth at Sites 708 (4096 m) and 711 (4428 m), presumably as a result of the fact that most of the reactive calcium carbonate was dissolved before burial. We also observed significant alkalinity deficits at many of these sites, a condition which most likely resulted from the precipitation of calcium carbonate either in the sedimentary column, or during retrieval of the core. Precipitation of CaCO3 as a result of pressure changes during core retrieval was confirmed by the comparison of Ca2+ and alkalinity from water samples obtained using the in-situ sampler and squeezed from the sediments. At Sites 707 and 716, the shallowest sites, no calcium or alkalinity deficits were present. In spite of our estimations of as much as 45% recrystallization at Site 709, all the carbonate sites exhibited what would be previously considered conservative Ca2+/Mg2+ profiles, which varied from -1 to -0.5. By virtue of the position of these sites relative to known basaltic basement or through the actual penetration of basalt (i.e., Sites 706, 707 and 712), these sites are all known to be underlain by basalt. Our results suggest, therefore, that more positive Ca2 + /Mg2+ gradients cannot necessarily be used as indicators of the nature of basement material.