984 resultados para 114-704


Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The planktonic foraminiferal zonation of Jenkins and Srinivasan (1986), which was defined for the southwestern sector of the temperate South Pacific Ocean, was successfully extended to the temperate sequences at Site 704. The zonation is based on first and last appearances of globorotalids, principally Globoconella species, which are indigenous to temperate surface-water masses. Most of the first and last appearances at ODP Site 704 are diachronous with those in the warmer temperate to subtropical South Atlantic, North Atlantic, and South Pacific oceans. The upper Miocene, upper Pliocene, and Quaternary sequences are punctuated by frequent incursions of subantarctic and polar assemblages of planktonic foraminifers. I assume that the appearance of an assemblage dominated by sinistral Neogloboquadrina pachyderma means that the Polar Front has migrated northward, but I do not know its position north or south of the site based on this preliminary work. The upper Miocene sequence contains five incursions between 6.5 and 5 Ma and the upper Pliocene and Quaternary sequence contains 16 events since 2.47 Ma. These are minimum estimates because the number of observed events will probably increase with higher sample density and use of quantitative methods to reveal more subtle events.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Benthic foraminifer and delta13C data from Site 849, on the west flank of the East Pacific Rise (0°11 'N, 110°31'W; 3851 m), give relatively continuous records of deep Pacific Ocean stable isotope variations between 0 and 5 Ma. The mean sample spacing is 4 k.y. Most analyses are from Cibicides wuellerstorfi, but isotopic offsets relative to Uvigerina peregrina appear roughly constant. Because of its location west of the East Pacific Rise, Site 849 yields a suitable record of mean Pacific Ocean delta13C, which approximates a global oceanic signal. The ~100-k.y.-period climate cycle, which is prevalent in delta18O does not dominate the long-term delta13C record. For delta13C, variations in the ~400- and 41-k.y. periods are more important. Phase lags of delta13C relative to ice volume in the 41- and 23-k.y. bands are consistent with delta13C as a measure of organic biomass. A model-calculated exponential response time of 1-2 k.y. is appropriate for carbon stored in soils and shallow sediments responding to glacial-interglacial climate change. Oceanic delta13C leads ice volume slightly in the 100-k.y. band, and this suggests another process such as changes in continental weathering to modulate mean river delta13C at long periods. The delta13C record from Site 849 diverges from that of Site 677 in the Panama Basin mostly because of decay of 13C-depleted organic carbon in the relatively isolated Panama Basin. North Atlantic to Pacific delta13C differences calculated using published data from Sites 607 and 849 reveal variations in Pliocene deep water within the range of those of the late Quaternary. Maximum delta13C contrast between these sites, which presumably reflects maximum influx of high-delta13C northern source water into the deep North Atlantic Ocean, occurred between 1.3 and 2.1 Ma, well after the initiation of Northern Hemisphere glaciation. Export of high-delta13C North Atlantic Deep Water from the Atlantic to the circumpolar Antarctic, as recorded by published delta13C data from Subantarctic Site 704, appears unrelated to the North Atlantic-Pacific delta13C contrast. To account for this observation, we suggest that deep-water formation in the North Atlantic reflects northern source characteristics, whereas export of this water into the circumpolar Antarctic reflects Southern Hemisphere wind forcing. Neither process appears directly linked to ice-volume variations.