974 resultados para 104-644


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Molecular and isotope compositions of headspace and total (free + sorbed) hydrocarbon gases from drilled cores of the three ODP Leg 104 Sites 642, 643, and 644 of the Voring Plateau are used to characterize the origin and distribution of these gases in Holocene to Eocene sediments. Only minor amounts of methane were found in the headspace (0.1 to < 0.001 vol%). Although methane through propane are present in all of the total gas samples, different origins account for the concentration and composition variations found. Site 643 at the foot of the outer Voring Plateau represents a geological setting with poor hydrocarbon generating potential, (sediments with low TOC and maturity overlying oceanic basement). Correspondingly, the total gas concentrations are low, typical for background gases (yield C1 - 4 = 31 to 232 ppb, C1/C2+ = 0.6 to 4; delta13C(CH4) -22 per mil to -42 per mil) probably of a diagenetic origin. Holocene to Eocene sediments, which overlie volcanic units, were drilled on the outer Vdring Plateau, at Holes 642B and D. Similar to Site 643, these sediments possess a poor hydrocarbon generating potential. The total gas character (yield C1 - 4 = 20 to 410 ppb; C1/C2+ = 1.7 to 13.3; delta13C(CH4) ca. -23 per mil to -40 per mil) again indicates a diagenetic origin, perhaps with the addition of some biogenic gas. The higher geothermal gradient and the underlying volcanics do not appear to have any influence on the gas geochemistry. The free gas (Vacutainer TM) in the sediments at Site 644 are dominated by biogenic gas (C1/C2+ > 104; delta13C(CH4) -77 per mil). Indications, in the total gas, of hydrocarbons with a thermogenic signature (yield C1 - 4 = 121 to 769 ppb, C1/ C2+ = 3 to 8; delta13C(CH4) = -39 per mil to -71 per mil), could not be unequivocally confirmed as such. Alternatively, these gases may represent mixtures of diagenetic and biogenic gases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Leg 104 organic geochemistry program consisted of monitoring (a) hydrocarbon gases, (b) organic and inorganic carbon, and (c) parameters resulting from Rock-Eval pyrolysis at three sites on the Voring Plateau. The results amplify some of those obtained earlier on Deep Sea Drilling Project (DSDP) Leg 38. In a regional sense there is an inverse correlation between amounts of hydrocarbon gas and organic carbon. For example, significant concentrations of methane are present only at Site 644 in the inner part of the plateau where organic carbon contents are always less than 1%; in contrast, at Site 642 on the outer plateau, methane concentrations are very low (ppm range) whereas amounts of organic carbon approach 2%. Only at Site 644 are the environmental conditions such that methanogenesis is an active diagenetic process. Because of the importance of routine gas analyses to the Ocean Drilling Program (ODP), a procedure was devised to improve the use of Vacutainers for collection of gas samples. Comparison of methods for determining organic carbon showed that at Sites 643 and 644 Rock-Eval TOC could be used as a measure of organic carbon, but not at Site 642. Although no liquid or solid hydrocarbons were encountered at any of the sites, a catalog of potential organic geochemical contaminants was developed in anticipation of such a discovery.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ostracodes are less common than might be normally expected at Sites 642, 643, and 644, perhaps pointing to the fact that the marine habitat below the overlying Pleistocene ice covers was a severe environment. This explanation, however, would not apply to the Pliocene and Miocene deposits from which ostracodes are just as poorly represented. In the latter case the Iceland-Faeroe Ridge might still have acted as a submerged barrier that did not allow an open ocean circulation of bottom waters. Thus the barrier presumably prevented an exchange of cold subarctic bottom water with that of the open Atlantic and therefore benthic deep-sea migration from the south was impeded. Some Quaternary species are, for the first time, recorded to extend to the Pliocene and/or Miocene.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Carbon, hydrogen, and oxygen isotope ratios determined on 32 squeezed interstitial fluid samples show remarkable variations with depth. For the most part these variations are related to diagenetic and alteration reactions taking place in the sediments, and in the underlying basalts. delta13C SumCO2 depth distributions at Sites 642 and 643 are the result of mixing of original SumCO2 of the paleo bottom water with SumCO2 released by remineralization of organic matter. At Site 644, where sulfate exhaustion occurs, the processes of methanogenesis by CO2 reduction and anaerobic methanotrophy strongly influence the delta13C SumCO2 distribution. Hydrogen and oxygen isotopes roughly covary, and become enriched in 16O and1H with depth. This effect is most pronounced at Sites 642 and 643, possibly due to the influence of the directly underlying basalts. Isotope depletions at Site 644 are much lower, corresponding to the greater sediment depth to basement. The alternative, that the O, H isotope shifts are due primarily to autochthonous diagenetic and exchange reactions, is not supported by the data available.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The abundance and composition of the upper Cenozoic terrigenous coarse-sand fraction (250 µm-2 mm) at ODP Sites 642, 643, and 644 were investigated to date the onset of significant ice-rafting in the Norwegian Sea, establish the regional chronology of ice-rafting, and determine the relative importance of global vs. regional controls on ice-rafting in this area. The first input of ice-rafted debris (IRD) occurs at approximately 2.9 Ma, with significant ice-rafting beginning at about 2.5 Ma. IRD abundances increase significantly in sediments younger than 0.9 Ma at all three holes, indicating climatic deterioration in the late Pleistocene. Differences in the timing of this IRD increase between holes result from regional patterns of IRD supply and surface circulation. Variations in IRD sources and dispersal patterns may also explain the slightly higher background level of IRD abundance at Hole 642B, a seaward site. Major peaks in the generalized IRD records from the Norwegian Sea are tentatively correlated to glacial stages or glacial-to-interglacial transitions in the globally defined oxygen isotope record. This correlation indicates the effect of global conditions on the regional climate of the Norwegian Sea, although the detailed IRD records at these sites are also affected by local/regional processes (e.g., circulation patterns and source area differences).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A quantative study was made of silicoflagellates recovered from Sites 642 (lower Miocene-upper Pliocene), 643 (lower Miocene-upper Miocene), and 644 (upper Pliocene-Quaternary) on the Voring Plateau. Although disconformities are present in these sequences, they represent a much more complete record of the Neogene than was recovered previously in the Norwegian Sea by DSDP Leg 38. Silicoflagellates are rare or absent for glacial sequences younger than 2.65 Ma, and generally sparse and poorly preserved in the lower upper Pliocene and upper Miocene. Lower and middle Miocene assemblages are diverse and generally well preserved. Temporal changes in the silicoflagellate assemblage are indicative of major paleoceanographic changes in the Norwegian Sea. A regional zonation for the Neogene of the Norwegian Sea is proposed, consisting of eleven zones: Naviculopsis lata Zone, N. quadrata Zone (emended), N. ponticula Zone (emended), Distephanus speculum hemisphaericus Zone (new), Caryocha ernestinae Zone (new), Bachmannocena circulus var. apiculata/Caryocha Zone (new), Distephanus crux scutulatus Zone (new), Bachmannocena diodon nodosa Zone (new), Distephanus boliviensis Zone (new), Ds. jimlingii Zone (elevated from subzonal to zonal status) with Subzones a and b (new), and Ds. speculum Zone (new). The ranges and abundances of over 100 species and morphotypes are tabulated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sedimentary extractable organic matter was analyzed at three ODP Leg 104 sites in the Norwegian Sea. Organic carbon content ranged from less than 0.1% to a maximum of 1.8%. Extractable organic matter content and unresolved complex mixture concentrations were low and randomly distributed. Low levels of aliphatic (branched and normal) and aromatic hydrocarbons were detected in all of the sediments analyzed. Total aliphatic and aromatic hydrocarbon concentrations ranged from 176 to 3,214 and 6 to 820 ppb, respectively. The concentrations of individual aliphatic (n-C15 to n-C32) and aromatic (two- to five-ring) hydrocarbons were generally less than 50 ppb and less than 10 ppb, respectively. No significant trend with sub-bottom depth was observed in either bulk organic matter or individual hydrocarbon concentrations. The predominant source of Cenozoic sedimentary hydrocarbons is concluded to be ice-rafted debris from the adjacent continent. All sites contain a mixture of recycled, mature petroleum-related and terrestrially derived hydrocarbons.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The long-term record of glacial/interglacial cycles indicates three major paleoceanographic regimes in the Norwegian Sea. The period since the first major glaciation over Scandinavia at 2.56 Ma is characterized by high-frequency, low-amplitude oscillations of ice-rafted debris inputs, a lowered salinity, and decreased carbonate shell production in surface waters as well as overall strong carbonate dissolution at the sea floor. These conditions indicate a more zonal circulation pattern in the Northern Hemisphere and a relative isolation of surface and bottom waters in the Norwegian Sea. The generally temperate glacial climate was only interrupted by episodic weak intrusions of warm Atlantic waters. These intrusions have been detected in considerable magnitude only at Site 644, and thus are restricted to areas much closer to the Norwegian shelf than during earlier periods. The interval from 1.2 to 0.6 Ma is characterized by an increase in carbonate shell production and a better preservation, as well as a change in frequency patterns of ice-rafted debris inputs. This pattern reflects increasing meridionality in circulation-strengthening contrasts in the Norwegian Sea between strong glaciations and warm interglacials. The past 0.6 Ma reveal high-amplitude oscillations in carbonate records that are dominated by the 100-k.y. frequency pattern. Glacial/interglacial sedimentary cycles in the ODP Leg 104 drill sites reveal a variety of specific dark lithofacies. These dark diamictons reflect intense iceberg rafting in surface waters fed by surges along the front of marine-based parts of the continental ice sheets in the southeastern sector of the Norwegian Sea and are associated with resuspension of reworked fossil organic carbon and strong dissolution at the sea floor. Piling up of huge iceberg barriers along the Iceland-Faeroe-Scotland Ridge might have partially blocked off surface water connections with the North Atlantic during these periods

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The mineralogical and geochemical study of samples from Sites 642, 643, and 644 enabled us to reconstruct several aspects of the Cenozoic paleoenvironmental evolution (namely volcanism, climate, hydrology) south of the Norwegian Sea and correlate it with evolution trends in the northeast Atlantic. Weathering products of early Paleogene volcanic material at Rockall Plateau, over the Faeroe-Iceland Ridge and the Voring Plateau indicate a hot and moist climate (lateritic environment) existed then. From Eocene to Oligocene, mineralogical assemblages of terrigenous sediments suggest the existence of a warm but somewhat less moist climate at that time than during the early Paleogene. At the beginning of early Miocene, climatic conditions were warm and damp. The large amounts of amorphous silica in Miocene sediment could indicate an important flux of silica from the continent then, or suggest the formation of upwelling. Uppermost lower Miocene and middle to upper Miocene clay assemblages suggest progressive cooling of the climate from warm to temperate at that time. At the end of early Miocene, hydrological exchanges between the North Atlantic and the Norwegian Sea became intense and gave rise to an important change in the mineralogy of deposits. From Pliocene to Pleistocene, the variable mineralogy of deposits reflects alternating glacial/interglacial climatic episodes, a phenomenon observed throughout the North Atlantic.