983 resultados para 1020


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The production of K*(892)(0) and phi(1020) in pp collisions at root s = 7 TeV was measured by the ALICE experiment at the LHC. The yields and the transverse momentum spectra d(2)N/dydp(T) at midrapidity vertical bar y vertical bar < 0.5 in the range 0 < p(T) < 6 GeV/c for K*(892)(0) and 0.4 < p(T) < 6 GeV/c for phi(1020) are reported and compared to model predictions. Using the yield of pions, kaons, and Omega baryons measured previously by ALICE at root s = 7 TeV, the ratios K*/K-, phi/K*, phi/ K-, phi/pi(-), and (Omega + <(Omega)over bar>)/phi are presented. The values of the K*/K-, phi/K* and phi/K- ratios are similar to those found at lower centre-of-mass energies. In contrast, the phi/pi(-) ratio, which has been observed to increase with energy, seems to saturate above 200 GeV. The (Omega + (Omega) over bar)/phi ratio in the p(T) range 1-5 GeV/ c is found to be in good agreement with the prediction of the HIJING/B (B) over bar v2.0model with a strong colour field.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ameasurement is presented of the φ×BR(φ → K+K−) production cross section at √s = 7 TeV using pp collision data corresponding to an integrated luminosity of 383 μb−1, collected with theATLAS experiment at the LHC. Selection of φ(1020) mesons is based on the identification of charged kaons by their energy loss in the pixel detector. The differential cross section ismeasured as a function of the transverse momentum, pT,φ , and rapidity, yφ, of the φ(1020) meson in the fiducial region 500< pT,φ <1200MeV, |yφ| < 0.8, kaon pT,K > 230 MeV and kaon momentum pK < 800 MeV. The integrated φ(1020)-meson production cross section in this fiducial range is measured to be σφ×BR(φ → K+K−) = 570 ± 8 (stat) ± 66 (syst) ± 20 (lumi) μb.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Drilling during Leg 167 at the California margin was scheduled to recover continuous sedimentary sections. Multiple advanced piston core (APC) holes drilled at different depth offsets provided core overlap in successive APCs. Correlation of high-resolution laboratory physical properties data from adjacent APC holes was used to compile composite depth sections for each site. The composite depth sections were used to confirm continuous recovery and enable high-resolution sampling. The meters composite depth (mcd) scale differs from the shipboard meters below seafloor (mbsf) scale because of (1) core expansion following recovery (MacKillop et al., 1995, doi:10.2973/odp.proc.sr.138.118.1995), (2) coring gaps, and (3) stretching/compression of sediment during coring (Lyle, Koizumi, Richter, et al., 1997, doi:10.2973/odp.proc.ir.167.1997). Moran (1997, doi:10.2973/odp.proc.sr.154.132.1997) calculated that sediment expansion accounted for 90%-95% of the Leg 154 depth offset between shipboard mbsf and the mcd scales. Terzaghi's one-dimensional theory of consolidation (Terzaghi, 1943) describes the response of sediments to stress loading and release. Mechanical loading in marine environments is provided by the buoyant weight of the overlying sediments. The load increases with depth below seabed, resulting in sediment volume reduction as water is "squeezed" out of the voids in the sediment. Stress release during core recovery results in expansion of the sediment and volume increase as water returns to the sediment. The sediment expansion or rebound defines the elastic properties of the sediment. In this study we examine the elastic deformation properties of sediments recovered from Sites 1020 and 1021. These results are used to (1) correct the laboratory index properties measurements to in situ values and (2) determine the contribution of sediment rebound to the depth offset between the mbsf and mcd scales.

Relevância:

20.00% 20.00%

Publicador: