913 resultados para 100508 Satellite Communications
Resumo:
In this paper a novel dual-band single circular polarization antenna feeding network for satellite communications is presented. The novel antenna feed chain1 is composed of two elements or subsystems, namely a diplexer and a bi-phase polarizer. In comparison with the classic topology based on an orthomode transducer and a dual-band polarizer, the proposed feed chain presents several advantages, such as compactness, modular design of the different components, broadband operation and versatility in the subsystems interconnection. The design procedure of this new antenna feed configuration is explained. Different examples of antenna feeding networks at 20/30 GHz are presented. It is pointed out the excellent results obtained in terms of isolation and axial ratio.
Resumo:
"21 October 1983."
Resumo:
Shipping list no.: 89-515-P.
Resumo:
"4 October 1983."
Resumo:
"21 November 1983."
Resumo:
"B-217967.5"--P. [1].
Resumo:
In this thesis, we consider four different scenarios of interest in modern satellite communications. For each scenario, we will propose the use of advanced solutions aimed at increasing the spectral efficiency of the communication links. First, we will investigate the optimization of the current standard for digital video broadcasting. We will increase the symbol rate of the signal and determine the optimal signal bandwidth. We will apply the time packing technique and propose a specifically design constellation. We will then compare some receiver architectures with different performance and complexity. The second scenario still addresses broadcast transmissions, but in a network composed of two satellites. We will compare three alternative transceiver strategies, namely, signals completely overlapped in frequency, frequency division multiplexing, and the Alamouti space-time block code, and, for each technique, we will derive theoretical results on the achievable rates. We will also evaluate the performance of said techniques in three different channel models. The third scenario deals with the application of multiuser detection in multibeam satellite systems. We will analyze a case in which the users are near the edge of the coverage area and, hence, they experience a high level of interference from adjacent cells. Also in this case, three different approaches will be compared. A classical approach in which each beam carries information for a user, a cooperative solution based on time division multiplexing, and the Alamouti scheme. The information theoretical analysis will be followed by the study of practical coded schemes. We will show that the theoretical bounds can be approached by a properly designed code or bit mapping. Finally, we will consider an Earth observation scenario, in which data is generated on the satellite and then transmitted to the ground. We will study two channel models, taking into account one or two transmit antennas, and apply techniques such as time and frequency packing, signal predistortion, multiuser detection and the Alamouti scheme.
Resumo:
Recently, wireless network technology has grown at such a pace that scientific research has become a practical reality in a very short time span. Mobile wireless communications have witnessed the adoption of several generations, each of them complementing and improving the former. One mobile system that features high data rates and open network architecture is 4G. Currently, the research community and industry, in the field of wireless networks, are working on possible choices for solutions in the 4G system. 4G is a collection of technologies and standards that will allow a range of ubiquitous computing and wireless communication architectures. The researcher considers one of the most important characteristics of future 4G mobile systems the ability to guarantee reliable communications from 100 Mbps, in high mobility links, to as high as 1 Gbps for low mobility users, in addition to high efficiency in the spectrum usage. On mobile wireless communications networks, one important factor is the coverage of large geographical areas. In 4G systems, a hybrid satellite/terrestrial network is crucial to providing users with coverage wherever needed. Subscribers thus require a reliable satellite link to access their services when they are in remote locations, where a terrestrial infrastructure is unavailable. Thus, they must rely upon satellite coverage. Good modulation and access technique are also required in order to transmit high data rates over satellite links to mobile users. This technique must adapt to the characteristics of the satellite channel and also be efficient in the use of allocated bandwidth. Satellite links are fading channels, when used by mobile users. Some measures designed to approach these fading environments make use of: (1) spatial diversity (two receive antenna configuration); (2) time diversity (channel interleaver/spreading techniques); and (3) upper layer FEC. The author proposes the use of OFDM (Orthogonal Frequency Multiple Access) for the satellite link by increasing the time diversity. This technique will allow for an increase of the data rate, as primarily required by multimedia applications, and will also optimally use the available bandwidth. In addition, this dissertation approaches the use of Cooperative Satellite Communications for hybrid satellite/terrestrial networks. By using this technique, the satellite coverage can be extended to areas where there is no direct link to the satellite. For this purpose, a good channel model is necessary.
Resumo:
Recently, wireless network technology has grown at such a pace that scientific research has become a practical reality in a very short time span. One mobile system that features high data rates and open network architecture is 4G. Currently, the research community and industry, in the field of wireless networks, are working on possible choices for solutions in the 4G system. The researcher considers one of the most important characteristics of future 4G mobile systems the ability to guarantee reliable communications at high data rates, in addition to high efficiency in the spectrum usage. On mobile wireless communication networks, one important factor is the coverage of large geographical areas. In 4G systems, a hybrid satellite/terrestrial network is crucial to providing users with coverage wherever needed. Subscribers thus require a reliable satellite link to access their services when they are in remote locations where a terrestrial infrastructure is unavailable. The results show that good modulation and access technique are also required in order to transmit high data rates over satellite links to mobile users. The dissertation proposes the use of OFDM (Orthogonal Frequency Multiple Access) for the satellite link by increasing the time diversity. This technique will allow for an increase of the data rate, as primarily required by multimedia applications, and will also optimally use the available bandwidth. In addition, this dissertation approaches the use of Cooperative Satellite Communications for hybrid satellite/terrestrial networks. By using this technique, the satellite coverage can be extended to areas where there is no direct link to the satellite. The issue of Cooperative Satellite Communications is solved through a new algorithm that forwards the received data from the fixed node to the mobile node. This algorithm is very efficient because it does not allow unnecessary transmissions and is based on signal to noise ratio (SNR) measures.
Resumo:
We measure quality of service (QoS) in a wireless network architecture of transoceanic aircraft. A distinguishing characteristic of the network scheme we analyze is that it mixes the concept of Delay Tolerant Networking (DTN) through the exploitation of opportunistic contacts, together with direct satellite access in a limited number of the nodes. We provide a graph sparsification technique for deriving a network model that satisfies the key properties of a real aeronautical opportunistic network while enabling scalable simulation. This reduced model allows us to analyze the impact regarding QoS of introducing Internet-like traffic in the form of outgoing data from passengers. Promoting QoS in DTNs is usually really challenging due to their long delays and scarce resources. The availability of satellite communication links offers a chance to provide an improved degree of service regarding a pure opportunistic approach, and therefore it needs to be properly measured and quantified. Our analysis focuses on several QoS indicators such as delivery time, delivery ratio, and bandwidth allocation fairness. Obtained results show significant improvements in all metric indicators regarding QoS, not usually achievable on the field of DTNs.
Resumo:
This paper describes a secure framework for tracking applications that use the Galileo signal authentication services. First a number of limitations that affect the trust of critical tracking applications, even in presence of authenticated GNSS signals, are detailed. Requirements for secure tracking are then introduced; detailing how the integrity characteristics of the Galileo authentication could enhance the security of active tracking applications. This paper concludes with a discussion of our existing tracking technology using a Siemens TC45 GSM/GPRS module and future development utilizing our previously proposed trusted GNSS receiver.
Resumo:
Современный этап развития комплексов автоматического управления и навигации малогабаритными БЛА многократного применения предъявляет высокие требования к автономности, точности и миниатюрности данных систем. Противоречивость требований диктует использование функционального и алгоритмического объединения нескольких разнотипных источников навигационной информации в едином вычислительном процессе на основе методов оптимальной фильтрации. Получили широкое развитие бесплатформенные инерциальные навигационные системы (БИНС) на основе комплексирования данных микромеханических датчиков инерциальной информации и датчиков параметров движения в воздушном потоке с данными спутниковых навигационных систем (СНС). Однако в современных условиях такой подход не в полной мере реализует требования к помехозащищённости, автономности и точности получаемой навигационной информации. Одновременно с этим достигли значительного прогресса навигационные системы, использующие принципы корреляционно экстремальной навигации по оптическим ориентирам и цифровым картам местности. Предлагается схема построения автономной автоматической навигационной системы (АНС) для БЛА многоразового применения на основе объединения алгоритмов БИНС, спутниковой навигационной системы и оптической навигационной системы. The modern stage of automatic control and guidance systems development for small unmanned aerial vehicles (UAV) is determined by advanced requirements for autonomy, accuracy and size of the systems. The contradictory of the requirements dictates novel functional and algorithmic tight coupling of several different onboard sensors into one computational process, which is based on methods of optimal filtering. Nowadays, data fusion of micro-electro mechanical sensors of inertial measurement units, barometric pressure sensors, and signals of global navigation satellite systems (GNSS) receivers is widely used in numerous strap down inertial navigation systems (INS). However, the systems do not fully comply with such requirements as jamming immunity, fault tolerance, autonomy, and accuracy of navigation. At the same time, the significant progress has been recently demonstrated by the navigation systems, which use the correlation extremal principle applied for optical data flow and digital maps. This article proposes a new architecture of automatic navigation management system (ANMS) for small UAV, which combines algorithms of strap down INS, satellite navigation and optical navigation system.