998 resultados para 1-sigma
Resumo:
We obtained new Fabry-Perot data cubes and derived velocity fields, monochromatic, and velocity dispersion maps for 28 galaxies in the Hickson compact groups 37, 40, 47, 49, 54, 56, 68, 79, and 93. We also derived rotation curves for 9 of the studied galaxies, 6 of which are strongly asymmetric. Combining these new data with previously published 2D kinematic maps of compact group galaxies, we investigated the differences between the kinematic and morphological position angles for a sample of 46 galaxies. We find that one third of the unbarred compact group galaxies have position angle misalignments between the stellar and gaseous components. This and the asymmetric rotation curves are clear signatures of kinematic perturbations, probably because of interactions among compact group galaxies. A comparison between the B-band Tully-Fisher relation for compact group galaxies and for the GHASP field-galaxy sample shows that, despite the high fraction of compact group galaxies with asymmetric rotation curves, these lay on the TF relation defined by galaxies in less dense environments, although with more scatter. This agrees with previous results, but now confirmed for a larger sample of 41 galaxies. We confirm the tendency for compact group galaxies at the low-mass end of the Tully-Fisher relation (HCG 49b, 89d, 96c, 96d, and 100c) to have either a magnitude that is too bright for its mass (suggesting brightening by star formation) and/or a low maximum rotational velocity for its luminosity (suggesting tidal stripping). These galaxies are outside the Tully Fisher relation at the 1 sigma level, even when the minimum acceptable values of inclinations are used to compute their maximum velocities. Including such galaxies with nu < 100 km s(-1) in the determination of the zero point and slope of the compact group B-band Tully-Fisher relation would strongly change the fit, making it different from the relation for field galaxies, which has to be kept in mind when studying scaling relations of interacting galaxies, especially at high redshifts.
Resumo:
We discuss the properties of homogeneous and isotropic flat cosmologies in which the present accelerating stage is powered only by the gravitationally induced creation of cold dark matter (CCDM) particles (Omega(m) = 1). For some matter creation rates proposed in the literature, we show that the main cosmological functions such as the scale factor of the universe, the Hubble expansion rate, the growth factor, and the cluster formation rate are analytically defined. The best CCDM scenario has only one free parameter and our joint analysis involving baryonic acoustic oscillations + cosmic microwave background (CMB) + SNe Ia data yields (Omega) over tilde = 0.28 +/- 0.01 (1 sigma), where (Omega) over tilde (m) is the observed matter density parameter. In particular, this implies that the model has no dark energy but the part of the matter that is effectively clustering is in good agreement with the latest determinations from the large- scale structure. The growth of perturbation and the formation of galaxy clusters in such scenarios are also investigated. Despite the fact that both scenarios may share the same Hubble expansion, we find that matter creation cosmologies predict stronger small scale dynamics which implies a faster growth rate of perturbations with respect to the usual Lambda CDM cosmology. Such results point to the possibility of a crucial observational test confronting CCDM with Lambda CDM scenarios through a more detailed analysis involving CMB, weak lensing, as well as the large-scale structure.
Resumo:
The kinematic approach to cosmological tests provides direct evidence to the present accelerating stage of the Universe that does not depend on the validity of general relativity, as well as on the matter-energy content of the Universe. In this context, we consider here a linear two-parameter expansion for the decelerating parameter, q(z)=q(0)+q(1)z, where q(0) and q(1) are arbitrary constants to be constrained by the union supernovae data. By assuming a flat Universe we find that the best fit to the pair of free parameters is (q(0),q(1))=(-0.73,1.5) whereas the transition redshift is z(t)=0.49(-0.07)(+0.14)(1 sigma) +0.54-0.12(2 sigma). This kinematic result is in agreement with some independent analyses and more easily accommodates many dynamical flat models (like Lambda CDM).
Resumo:
Spectral changes of Na(2) in liquid helium were studied using the sequential Monte Carlo-quantum mechanics method. Configurations composed by Na(2) surrounded by explicit helium atoms sampled from the Monte Carlo simulation were submitted to time-dependent density-functional theory calculations of the electronic absorption spectrum using different functionals. Attention is given to both line shift and line broadening. The Perdew, Burke, and Ernzerhof (PBE1PBE, also known as PBE0) functional, with the PBE1PBE/6-311++G(2d,2p) basis set, gives the spectral shift, compared to gas phase, of 500 cm(-1) for the allowed X (1)Sigma(+)(g) -> B (1)Pi(u) transition, in very good agreement with the experimental value (700 cm(-1)). For comparison, cluster calculations were also performed and the first X (1)Sigma(+)(g) -> A (1)Sigma(+)(u) transition was also considered.
Resumo:
Recent detections of high-redshift absorption by both atomic hydrogen and molecular gas in the radio spectra of quasars have provided a powerful tool for measuring possible temporal and spatial variations of physical 'constants' in the Universe. We compare the frequency of high-redshift hydrogen 21-cm absorption with that of associated molecular absorption in two quasars to place new (1 sigma) upper limits on any variation in y = g(p) alpha(2) (where alpha is the fine-structure constant, and g(p) is the proton g-factor) of \Delta y/y\ < 5 x 10(-6) at redshifts z = 0.25 and 0.68. These quasars are separated by a comoving distance of 3000 Mpc (for H-0=75 km s(-1) Mpc(-1) and q(0) = 0). We also derive limits on the time rates of change of \(g) over dot (p)/(g) over dot (p)\ < 1 x 10(-15) yr(-1) and \(alpha) over dot/(a) over dot\ < 5 x 10(-16) yr(-1) between the present epoch and z = 0.68, These limits are more than an order of magnitude smaller than previous results derived from highredshift measurements.
Resumo:
In this work we investigate the population dynamics of cooperative hunting extending the McCann and Yodzis model for a three-species food chain system with a predator, a prey, and a resource species. The new model considers that a given fraction sigma of predators cooperates in prey's hunting, while the rest of the population 1-sigma hunts without cooperation. We use the theory of symbolic dynamics to study the topological entropy and the parameter space ordering of the kneading sequences associated with one-dimensional maps that reproduce significant aspects of the dynamics of the species under several degrees of cooperative hunting. Our model also allows us to investigate the so-called deterministic extinction via chaotic crisis and transient chaos in the framework of cooperative hunting. The symbolic sequences allow us to identify a critical boundary in the parameter spaces (K, C-0) and (K, sigma) which separates two scenarios: (i) all-species coexistence and (ii) predator's extinction via chaotic crisis. We show that the crisis value of the carrying capacity K-c decreases at increasing sigma, indicating that predator's populations with high degree of cooperative hunting are more sensitive to the chaotic crises. We also show that the control method of Dhamala and Lai [Phys. Rev. E 59, 1646 (1999)] can sustain the chaotic behavior after the crisis for systems with cooperative hunting. We finally analyze and quantify the inner structure of the target regions obtained with this control method for wider parameter values beyond the crisis, showing a power law dependence of the extinction transients on such critical parameters.
Resumo:
We produce five flavour models for the lepton sector. All five models fit perfectly well - at the 1 sigma level - the existing data on the neutrino mass-squared differences and on the lepton mixing angles. The models are based on the type I seesaw mechanism, on a Z(2) symmetry for each lepton flavour, and either on a (spontaneously broken) symmetry under the interchange of two lepton flavours or on a (spontaneously broken) CP symmetry incorporating that interchange - or on both symmetries simultaneously. Each model makes definite predictions both for the scale of the neutrino masses and for the phase delta in lepton mixing; the fifth model also predicts a correlation between the lepton mixing angles theta(12) and theta(23).
Resumo:
We analyse the possibility that, in two Higgs doublet models, one or more of the Higgs couplings to fermions or to gauge bosons change sign, relative to the respective Higgs Standard Model couplings. Possible sign changes in the coupling of a neutral scalar to charged ones are also discussed. These wrong signs can have important physical consequences, manifesting themselves in Higgs production via gluon fusion or Higgs decay into two gluons or into two photons. We consider all possible wrong sign scenarios, and also the symmetric limit, in all possible Yukawa implementations of the two Higgs doublet model, in two different possibilities: the observed Higgs boson is the lightest CP-even scalar, or the heaviest one. We also analyse thoroughly the impact of the currently available LHC data on such scenarios. With all 8 TeV data analysed, all wrong sign scenarios are allowed in all Yukawa types, even at the 1 sigma level. However, we will show that B-physics constraints are crucial in excluding the possibility of wrong sign scenarios in the case where tan beta is below 1. We will also discuss the future prospects for probing the wrong sign scenarios at the next LHC run. Finally we will present a scenario where the alignment limit could be excluded due to non-decoupling in the case where the heavy CP-even Higgs is the one discovered at the LHC.
Resumo:
Major and trace element compositions, stable H and 0 isotope compositions and Fe 31 contents of amphibole megacrysts of Pliocene-Pleistocene alkaline basalts have been investigated to obtain information on the origin of mantle fluids beneath the Carpathian-Pannonian region. The megacrysts have been regarded as igneous cumulates formed in the mantle and brought to the surface by the basaltic magma. The studied amphiboles have oxygen isotope compositions (5.4 +/- 0.2 %., 1 sigma), supporting their primary mantle origin. Even within the small 6180 variation observed, correlations with major and trace elements are detected. The negative delta(18)O-MgO and the positive delta(18)O-La/Sm(N) correlations are interpreted to have resulted from varying degrees of partial melting. The halogen (F, Cl) contents are very low (< 0.1 wt. %), however, a firm negative (F+Cl)-MgO correlation (R(2) = 0.84) can be related to the Mg-Cl avoidance in the amphibole structure. The relationships between water contents, H isotope compositions and Fe 31 contents of the amphibole megacrysts revealed degassing. Selected undegassed amphibole megacrysts show a wide 813 range from -80 to -20 parts per thousand. The low delta D value is characteristic of the normal mantle, whereas the high delta D values may indicate the influence of fluids released from subducted oceanic crust. The chemical and isotopic evidence collectively suggest that formation of the amphibole megacrysts is related to fluid metasomatism, whereas direct melt addition is insignificant.
Resumo:
A fully numerical two-dimensional solution of the Schrödinger equation is presented for the linear polyatomic molecule H^2+_3 using the finite element method (FEM). The Coulomb singularities at the nuclei are rectified by using both a condensed element distribution around the singularities and special elements. The accuracy of the results for the 1\sigma and 2\sigma orbitals is of the order of 10^-7 au.
Resumo:
This contribution describes the optimization of chlorine extraction from silicate samples by pyrohydrolysis prior to the precise determination of Cl stable-isotope compositions (637 Cl) by gas source, dual inlet Isotope Ratio Mass Spectrometry (IRMS) on CH(3)Clg. The complete method was checked on three international reference materials for Cl-content and two laboratory glass standards. Whole procedure blanks are lower than 0. 5 mu mol, corresponding to less than 10 wt.% of most of the sample chloride analysed. In the absence of international chlorine isotope rock, we report here Cl extracted compared to accepted Cl contents and reproducibilities on Cl and delta Cl-37 measurements for the standard rocks. After extraction, the Cl contents of the three international references compared within error with the accepted values (mean yield = 94 +/-10%) with reproducibilities better than 12% (10). The laboratory glass standards - andesite SO100DS92 and phonolite S9(2) - were used specifically to test the effect of chloride amount on the measurements. They gave Cl extraction yields of 100 +/-6% (1 sigma-; n = 15) and 105 +/- 8% (1 sigma-; n = 7), respectively, with delta Cl-37 values of -0.51 0.14%o and -0.39 0.17%o (1g). In summary, for silicate samples with Cl contents between 39 and 9042 ppm, the Pyrohydrolysis/HPLC method leads to overall CI extraction yields of 100 8%, reproducibilities on Cl contents of 7% and on delta Cl-37 measurements of 0.12%o (all 1 sigma). The method was further applied to ten silicate rocks of various mineralogy and chemistry (meteorite, fresh MORB glasses, altered basalts and setpentinized peridotites) chosen for their large range of Cl contents (70-2156 ppm) and their geological significance. delta Cl-37 values range between -2.33 and -0.50%o. These strictly negative values contrast with the large range and mainly positive values previously reported for comparable silicate samples and shown here to be affected by analytical problems. Thus we propose a preliminary, revised terrestrial CI cycle, mainly dominated by negative and zero delta Cl-37 values. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Diffusive isotopic fractionation factors are important in order to understand natural processes and have practical application in radioactive waste storage and carbon dioxide sequestration. We determined the isotope fractionation factors and the effective diffusion coefficients of chloride and bromide ions during aqueous diffusion in polyacrylamide gel. Diffusion was determined as functions of temperature, time and concentration. The effect of temperature is relatively large on the diffusion coefficient (D) but only small on isotope fractionation. For chlorine, the ratio, D-35cl/D-37cl varied from 1.00128 +/- 0.00017 (1 sigma) at 2 degrees C to 1.00192 +/- 0.00015 at 80 degrees C. For bromine, D-79Br/D-81Br varied from 1.00098 +/- 0.00009 at 2 degrees C to 1.0064 +/- 0.00013 at 21 degrees C and 1.00078 +/- 0.00018 (1 sigma) at 80 degrees C. There were no significant effects on the isotope fractionation due to concentration. The lack of sensitivity of the diffusive isotope fractionation to anything at the most common temperatures (0 to 30 C) makes it particularly valuable for application to understanding processes in geological environments and an important natural tracer in order to understand fluid transport processes. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Simulations of ozone loss rates using a three-dimensional chemical transport model and a box model during recent Antarctic and Arctic winters are compared with experimental loss rates. The study focused on the Antarctic winter 2003, during which the first Antarctic Match campaign was organized, and on Arctic winters 1999/2000, 2002/2003. The maximum ozone loss rates retrieved by the Match technique for the winters and levels studied reached 6 ppbv/sunlit hour and both types of simulations could generally reproduce the observations at 2-sigma error bar level. In some cases, for example, for the Arctic winter 2002/2003 at 475 K level, an excellent agreement within 1-sigma standard deviation level was obtained. An overestimation was also found with the box model simulation at some isentropic levels for the Antarctic winter and the Arctic winter 1999/2000, indicating an overestimation of chlorine activation in the model. Loss rates in the Antarctic show signs of saturation in September, which have to be considered in the comparison. Sensitivity tests were performed with the box model in order to assess the impact of kinetic parameters of the ClO-Cl2O2 catalytic cycle and total bromine content on the ozone loss rate. These tests resulted in a maximum change in ozone loss rates of 1.2 ppbv/sunlit hour, generally in high solar zenith angle conditions. In some cases, a better agreement was achieved with fastest photolysis of Cl2O2 and additional source of total inorganic bromine but at the expense of overestimation of smaller ozone loss rates derived later in the winter.
Resumo:
The transition redshift (deceleration/acceleration) is discussed by expanding the deceleration parameter to first order around its present value. A detailed study is carried out by considering two different parametrizations, q = q(0) + q(1)z and q = q(0) + q(1)z(1 + z)(-1), and the associated free parameters (q(0), q(1)) are constrained by three different supernovae (SNe) samples. A previous analysis by Riess et al. using the first expansion is slightly improved and confirmed in light of their recent data (Gold07 sample). However, by fitting the model with the Supernova Legacy Survey (SNLS) type Ia sample, we find that the best fit to the redshift transition is z(t) = 0.61, instead of z(t) = 0.46 as derived by the High-z Supernovae Search (HZSNS) team. This result based in the SNLS sample is also in good agreement with the sample of Davis et al., z(t) = 0.60(-0.11)(+0.28) (1 sigma). Such results are in line with some independent analyses and accommodate more easily the concordance flat model (Lambda CDM). For both parametrizations, the three SNe Ia samples considered favour recent acceleration and past deceleration with a high degree of statistical confidence level. All the kinematic results presented here depend neither on the validity of general relativity nor on the matter-energy contents of the Universe.
Resumo:
The kinematic expansion history of the universe is investigated by using the 307 supernovae type Ia from the Union Compilation set. Three simple model parameterizations for the deceleration parameter ( constant, linear and abrupt transition) and two different models that are explicitly parametrized by the cosmic jerk parameter ( constant and variable) are considered. Likelihood and Bayesian analyses are employed to find best fit parameters and compare models among themselves and with the flat Lambda CDM model. Analytical expressions and estimates for the deceleration and cosmic jerk parameters today (q(0) and j(0)) and for the transition redshift (z(t)) between a past phase of cosmic deceleration to a current phase of acceleration are given. All models characterize an accelerated expansion for the universe today and largely indicate that it was decelerating in the past, having a transition redshift around 0.5. The cosmic jerk is not strongly constrained by the present supernovae data. For the most realistic kinematic models the 1 sigma confidence limits imply the following ranges of values: q(0) is an element of [-0.96, -0.46], j(0) is an element of [-3.2,-0.3] and z(t) is an element of [0.36, 0.84], which are compatible with the Lambda CDM predictions, q(0) = -0.57 +/- 0.04, j(0) = -1 and z(t) = 0.71 +/- 0.08. We find that even very simple kinematic models are equally good to describe the data compared to the concordance Lambda CDM model, and that the current observations are not powerful enough to discriminate among all of them.