1000 resultados para 1- methylcyclopropene


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We investigated the feedback regulation of ethylene biosynthesis in tomato (Lycopersicon esculentum) fruit with respect to the transition from system 1 to system 2 ethylene production. The abundance of LE-ACS2, LE-ACS4, and NR mRNAs increased in the ripening fruit concomitant with a burst in ethylene production. These increases in mRNAs with ripening were prevented to a large extent by treatment with 1-methylcyclopropene (MCP), an ethylene action inhibitor. Transcripts for the LE-ACS6 gene, which accumulated in preclimacteric fruit but not in untreated ripening fruit, did accumulate in ripening fruit treated with MCP. Treatment of young fruit with propylene prevented the accumulation of transcripts for this gene. LE-ACS1A, LE-ACS3, and TAE1 genes were expressed constitutively in the fruit throughout development and ripening irrespective of whether the fruit was treated with MCP or propylene. The transcripts for LE-ACO1 and LE-ACO4 genes already existed in preclimacteric fruit and increased greatly when ripening commenced. These increases in LE-ACO mRNA with ripening were also prevented by treatment with MCP. The results suggest that in tomato fruit the preclimacteric system 1 ethylene is possibly mediated via constitutively expressed LE-ACS1A and LE-ACS3 and negatively feedback-regulated LE-ACS6 genes with preexisting LE-ACO1 and LE-ACO4 mRNAs. At the onset of the climacteric stage, it shifts to system 2 ethylene, with a large accumulation of LE-ACS2, LE-ACS4, LE-ACO1, and LE-ACO4 mRNAs as a result of a positive feedback regulation. This transition from system 1 to system 2 ethylene production might be related to the accumulated level of NR mRNA.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The purpose of this work was to evaluate the effects of ethylene action blockade and cold storage on the ripening of `Golden` papaya fruit. Papayas harvested at maturity stage 1 (up to 15% yellow skin) were evaluated. Half of the fruits, whether treated or not treated with 100 nL L(-1) of 1-methylcyclopropene (1-MCP), were stored at 23A degrees C, while the other half were stored at 11A degrees C for 20 days prior to being stored at 23A degrees C. Non-refrigerated fruits receiving 1-MCP application presented a reduction in respiratory activity, ethylene production, skin color development and pectinmethylesterase activity. Even with a gradual increase in ethylene production at 23A degrees C, fruits treated with 1-MCP maintained a high firmness, but presented a loss of green skin color. Cold storage caused a decrease in ethylene production when fruits were transferred to 23A degrees C. The results suggest that pulp softening is more dependent on ethylene than skin color development, and that some processes responsible for loss of firmness do not depend on ethylene.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The carotenoid composition was evaluated during ripening of papaya cv. `Golden` under untreated (control) conditions and treated with ethylene and 1-methylcyclopropene (1-MCP). At the end of the experiments, the total carotenoid content in the control group (2194.4 mu g/100 g) was twice as high as that found in ethylene (1018.1 mu g/100 g) and 1-MCP (654.5 mu g/100 g) gas-treated samples. Separation of 21 carotenoids by HPLC connected to photodiode array and mass spectrometry detectors showed that no minor carotenoids seemed to be particularly favoured by the treatments. Lycopene was the major carotenoid in all untreated and gas-treated samples, ranging from 461.5 to 1321.6 mu g/100 g at the end of the experiments. According to the proposed biosynthetic pathway, lycopene is the central compound, since it is the most abundant carotenoid indicating a high stimulation of its upstream steps during ripening, and it is the source for the synthesis of other derivative compounds, such as beta-cryptoxanthin. The influence of both gas treatments on the carotenoid biosynthetic pathway was considered. (C) 2011 Elsevier Inc. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Papaya (Carica papaya) is a climacteric fruit that undergoes dramatic pulp softening. Fruits sampled at three different conditions (natural ripening or after exposition to ethylene or 1-methylcyclopropene) were used for the isolation of cell wall polymers to find changes in their degradation pattern. Polymers were separated according to their solubility in water, CDTA, and 4 M alkali, and their monosaccharide compositions were determined. Water-soluble polymers were further characterized, and their increased yields in control and ethylene-treated fruit, in contrast to those that were treated with 1-MCP, indicated a strong association between fruit softening and changes in the cell wall water-soluble polysaccharide fraction. The results indicate that the extensive softening in the pulp of ripening papayas is a consequence of solubilization of large molecular mass galacturonans from the pectin fraction of the cell wall. This process seems to be dependent on the levels of ethylene, and it is likely that the releasing of galacturonan chains results from an endo acting polygalacturonase.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Papaya is a climacteric fruit that has high amounts of benzylglucosinolates (BG) and benzylisothiocyanates (BITC), but information regarding levels of BG or BITC during fruit development and ripening is limited. Because BG and BITC are compounds of importance from both a nutritional and a crop yield standpoint, the aim of this work was to access data on the distribution and changes of BG and BITC levels during fruit development and ripening. BG and BITC levels were quantified in peel, pulp, and seeds of papaya fruit. Volatile BITC was also verified in the internal cavity of the fruit during ripening. The influence of the ethylene in BG and BITC levels and mirosinase activity was tested by exposing mature green fruits to ethylene and 1-methylcyclopropene (1-MCP). The highest BG levels were detected in seeds, followed by the peel and pulp being decreased in all tissues during fruit development. Similarly, the levels of BITC were much higher in the seeds than the peel and pulp. The levels of BG for control and ethylene-treated fruit were very similar, increasing in the pulp and peel during late ripening but not changing significantly in seeds. On the other hand, fruit exposed to 1-MCP showed a decrease in BG amount in the pulp and accumulation in seed. The treatments did not result in clear differences regarding the amount of BITC in the pulp and peel of the fruit. According to the results, ethylene does not have a clear effect on BITC accumulation in ripening papaya fruit. The fact that BG levels in the pulp did not decrease during ripening, regardless of the treatment employed, and that papaya is consumed mainly as fresh fruit, speaks in favor of this fruit as a good dietary source for glucosinolate and isothiocyanates.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The inhibition of ethylene action by 1-methylcyclopropene (1-MCP) extends shelf and storage life of many climacteric fruits. However, 1-MCP appears to have limited effects on stone fruit depending on specie and cultivar. The effects of 1-MCP on ripening and quality of 'Laetitia' plums were determined during ripening at 23ºC following harvest and cold storage. Japanese plums (Prunus salicina, cv. Laetitia) were harvested at mature pre-climacteric stage, cooled to 2ºC within 36 hours of harvest and then treated with 0, 0.05, 0.10, 0.50 or 1.00 muL L-1 of 1-MCP at 1°C for 24 hours. Following treatment, fruits were either held at 23ºC for 16 days or stored at 1ºC for 50 days. Fruits were removed from cold storage at 10-day intervals and allowed to ripe at 23°C for five days. A delay of climacteric respiration and ethylene production by 1-MCP treatment during ripening following harvest and cold storage was associated to a slow rate of fruit softening. 1-MCP treatment also delayed the loss of titratable acidity and changes of flesh and skin color, whereas it had little or no effect on soluble solids content. 1-MCP effects were concentration- and storage duration-dependent and, generally, a saturation fruit response to 1-MCP occurred between 0.5 and 1.0 muL L-1. During ripening, 1-MCP treated fruits attained quality similar to that of controls. Results indicated that 1-MCP treatment may extend shelf life (23ºC) and storage life (1ºC) of 'Laetitia' plums by approximately six and 20 days, respectively.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The objective of this work was to evaluate the effect of growth regulators on gas diffusion and on metabolism of 'Brookfield' apple, and to determine their correlation with quality characteristics of fruit stored in controlled atmosphere. A completely randomized design was used with four replicates. After eight months of storage, the effects of water (control), aminoethoxyvinylglycine (AVG), AVG + ethephon, AVG + naphthaleneacetic acid (NAA), ethephon + NAA, sole NAA, 1-MCP, ethylene absorption by potassium permanganate (ABS), AVG + ABS, and of AVG + 1-MCP - applied at different rates and periods - were evaluated on: gas diffusion rate, ethylene production, respiratory rate, internal ethylene concentration, internal CO2 content, mealiness, and intercellular space. Fruit from the control and sole NAA treatments had the highest mealiness occurrence. Growth regulators significantly changed the gaseous diffusion through the pulp of 'Brookfield' apple, mainly in the treatment AVG + ABS, which kept the highest gas diffusion rate. NAA spraying in the field, with or without another growth regulator, increased ripening metabolism by rising ethylene production and respiration rate, and reduced gas diffusion during shelf life. AVG spraying cannot avoid the ethephon effect during the ripening process, and reduces both the internal space and mealiness incidence, but it is not able to induce ethylene production or to increase respiration rates.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

O bloqueio de eventos dependentes da sinalização do etileno pode afetar de maneira positiva ou negativa a qualidade de frutos tropicais após o armazenamento refrigerado. Dessa forma, os objetivos do presente trabalho foram estudar o envolvimento do etileno no desenvolvimento de injúrias de frio em tangor 'Murcott' e avaliar as respostas envolvidas no processo de resistência às injúrias. Os frutos foram expostos a 500nL L-1 de 1-metilciclopropeno (1-MCP) durante 12 horas ou imersos em soluções contendo 2000nL L-1 de ethephon ou ácido salicílico durante cinco minutos antes de serem armazenados a 1°C, por 90 dias. Como controle, parte dos frutos foi armazenada a 1°C. O tratamento de frutos com ethephon ou ácido salicílico antecipou e intensificou as injúrias de frio. Por outro lado, a inibição do etileno pelo 1-MCP retardou o surgimento dos sintomas e resultou em menor índice de injúrias e percentual de frutos podres ao final do armazenamento. A atividade da superóxido dismutase (SOD) foi intensificada aos 45 dias, contudo em menor intensidade nos frutos tratados com ácido salicílico. Nas avaliações subsequentes, houve decréscimo na atividade da SOD em todos os tratamentos, porém aos 90 dias a intensidade manteve-se levemente superior à observada nos primeiros 30 dias de armazenamento. Os teores de putrescina (Put) e espermina (Spm), no flavedo dos frutos, não sofreram significativa alteração durante o armazenamento. em contrapartida, os teores de espermidina (Spd) foram mais afetados pelo estresse ocasionado pelo frio.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Agronomia (Horticultura) - FCA

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Maintaining the postharvest quality of whole and fresh-cut fruit during storage and distribution is the major challenge facing fruit industry. For this purpose, industry adopt a wide range of technologies to enable extended shelf-life. Many factors can lead to loss of quality in fresh product, hence the common description of these products as ‘perishable’. As a consequence normal factors such as transpiration and respiration lead ultimately to water loss and senescence of the product. Fruits and vegetables are living commodities and their rate of respiration is of key importance to maintenance of quality. It has been commonly observed that the greater the respiration rate of a product, the shorter the shelf-life. The principal problem for fresh-cut fruit industries is the relative shorter shelf-life of minimally processed fruit (MPF) compared to intact product. This fact is strictly connected with the higher ethylene production of fruit tissue stimulated during fresh-cut processing (peeling, cutting, dipping). 1-Methylcyclopropene (1-MCP) is an inhibitor of ethylene action and several researches have shown its effectiveness on the inhibition of ripening and senescence incidence for intact fruit and consequently on their shelf-life extension. More recently 1-MCP treatment has been tested also for shelf-life extension of MPF but discordant results have been obtained. Considering that in some countries 1-MCP is already a commercial product registered for the use on a number of horticultural products, the main aim of this actual study was to enhance our understanding on the effects of 1-MCP treatment on the quality maintenance of whole and fresh-cut climacteric and non-climacteric fruit (apple, kiwifruit and pineapple). Concerning the effects of 1-MCP on whole fruit, was investigated the effects of a semi-commercial postharvest treatment with 1-MCP on the quality of Pink Lady apples as functions of fruit ripening stage, 1-MCP dose, storage time and also in combination with controlled atmospheres storage in order to better understand what is the relationship among these parameters and if is possible to maximize the 1-MCP treatment to meet the market/consumer needs and then in order to put in the market excellent fruit. To achieve this purpose an incomplete three-level three-factor design was adopted. During the storage were monitored several quality parameters: firmness, ripening index, ethylene and carbon dioxide production and were also performed a sensory evaluations after 6 month of storage. In this study the higher retention of firmness (at the end of storage) was achieved by applying the greatest 1-MCP concentration to fruits with the lowest maturity stage. This finding means that in these semi-commercial conditions we may considerate completely blocked the fruit softening. 1-MCP was able to delay also the ethylene and CO2 production and the maturity parameters (soluble solids content and total acidity). Only in some cases 1-MCP generate a synergistic effect with the CA storage. The results of sensory analyses indicated that, the 1-MCP treatment did not affect the sweetness and whole fruit flavour while had a little effect on the decreasing cut fruit flavour. On the contrary the treated apple was more sour, crisp, firm and juicy. The effects of some treatment (dipping and MAP) on the nutrient stability were also investigated showing that in this case study the adopted treatments did not have drastic effects on the antioxidant compounds on the contrary the dipping may enhance the total antioxidant activity by the accumulation of ascorbic acid on the apple cut surface. Results concerning the effects of 1-MCP in combination with MAP on the quality parameters behaviour of the kiwifruit were not always consistent and clear: in terms of colour maintenance, it seemed to have a synergistic effect with N2O MAP; as far as ripening index is concerned, 1-MCP had a preservative effect, but just for sample packed in air.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Banana fruit are highly susceptible to chilling injury during low temperature storage. Experiments were conducted to compare ethylene binding during storage at chilling (3 and 8 degreesC) versus optimum (13 degreesC) temperatures. The skins of fruit stored at 3 and 8 degreesC gradually darkened as storage duration increased. This chilling effect was reflected in increasing membrane permeability as shown by increased relative electrolyte leakage from skin tissue. In contrast, banana fruit stored for 8 days at 13 degreesC showed no chilling injury symptoms. Exposure of banana fruit to the ethylene binding inhibitor 1-methylcyclopropene (1 mul l(-1) 1-MCP) prevented ripening. However, this treatment also enhanced the chilling injury accelerated the occurrence of chilling injury-associated increased membrane permeability. C-14-ethylene release assay showed that ethylene binding by banana fruit stored at low temperature decreased with reduced storage temperature and/or prolonged storage time. Fruit exposed to 1-MCP for 12 h and then stored at 3 or 8 degreesC exhibited lower ethylene binding than those stored at 13 degreesC. Thus, chilling injury of banana fruit stored at low temperature is associated with a decrease in ethylene binding. The ability of tissue to respond to ethylene is evidently reduced, thereby resulting in failure to ripen.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Internal browning is an important disorder in pear fruit which can lead to economic losses. Pears (Pyrus communis L. cv. Bartlett) were harvested at early harvest maturity of 90 N from a commercial orchard in southern Brazil. Methyl jasmonate, ethanol, and 1-methylcyclopropene vapor treatments were carried out for 24 hours in order to mitigate the internal browning disorder. Fruit were stored for up to 150 days at 0 ± 1 °C and 90 ± 5 % RH. Pears exhibited internal browning in 37 % of the control samples after 90 days of cold storage. However, no internal browning symptoms were observed in the 1-MCP treatment. The first symptoms in 1-MCP samples were noticed after 120 days of cold storage (12 %) and reached 100 % in five days at room temperature. 1-MCP-treated pears showed flesh firmness values of 82 N after 90 days of cold storage and 18.7 N when they were removed from the cold storage and kept at 20 °C. The greatest acceptance index was attributed to 1- MCP pears after 90 days at 0 ± 1 °C followed by 5 days at 20 ± 1 °C (89.35). High acceptance indexes were attributed to MeJa (77.95) and control pears (76.40) after 30 days in cold storage followed by 5 days at room temperature. 1-MCP (0.3 µL L-1 , 24 hours at 0 ± 1 °C) treatment delays ripening and mitigates the internal browning in early harvested ?Bartlett? pears, that can be stored for up to 90 days at 0 ± 1 °C.