966 resultados para 0604 Genetics
Resumo:
We have identified truncating mutations in the human DLG3 ( neuroendocrine dlg) gene in 4 of 329 families with moderate to severe X-linked mental retardation. DLG3 encodes synapse-associated protein 102 (SAP102), a member of the membrane-associated guanylate kinase protein family. Neuronal SAP102 is expressed during early brain development and is localized to the postsynaptic density of excitatory synapses. It is composed of three amino-terminal PDZ domains, an src homology domain, and a carboxyl-terminal guanylate kinase domain. The PDZ domains interact directly with the NR2 subunits of the NMDA glutamate receptor and with other proteins responsible for NMDA receptor localization, immobilization, and signaling. The mutations identified in this study all introduce premature stop codons within or before the third PDZ domain, and it is likely that this impairs the ability of SAP102 to interact with the NMDA receptor and/or other proteins involved in downstream NMDA receptor signaling pathways. NMDA receptors have been implicated in the induction of certain forms of synaptic plasticity, such as long-term potentiation and long-term depression, and these changes in synaptic efficacy have been proposed as neural mechanisms underlying memory and learning. The disruption of NMDA receptor targeting or signaling, as a result of the loss of SAP102, may lead to altered synaptic plasticity and may explain the intellectual impairment observed in individuals with DLG3 mutations.
Resumo:
We describe here two new transposable elements, CemaT4 and CemaT5, that were identified within the sequenced genome of Caenorhabditis elegans using homology based searches. Five variants of CemaT4 were found, all non-autonomous and sharing 26 bp inverted terminal repeats (ITRs) and segments (152-367 bp) of sequence with similarity to the CemaT1 transposon of C. elegans. Sixteen copies of a short, 30 bp repetitive sequence, comprised entirely of an inverted repeat of the first 15 bp of CemaT4's ITR, were also found, each flanked by TA dinucleotide duplications, which are hallmarks of target site duplications of mariner-Tc transposon transpositions. The CemaT5 transposable element had no similarity to maT elements, except for sharing identical ITR sequences with CemaT3. We provide evidence that CemaT5 and CemaT3 are capable of excising from the C. elegans genome, despite neither transposon being capable of encoding a functional transposase enzyme. Presumably, these two transposons are cross-mobilised by an autonomous transposon that recognises their shared ITRs. The excisions of these and other non-autonomous elements may provide opportunities for abortive gap repair to create internal deletions and/or insert novel sequence within these transposons. The influence of non-autonomous element mobility and structural diversity on genome variation is discussed.
Resumo:
Cells of the mononuclear phagocyte lineage possess receptors for macrophage colony-stimulating factor (CSF-1) encoded by the c-fms protooncogene and respond to CSF-1 with increased survival, growth, differentiation, and reversible changes in function. The c-fms gene is itself a macrophage differentiation marker. In whole mount analyses of mRNA expression in embryos, c-fms is expressed at very high levels on placental trophoblasts. It is detectable on individual cells in the yolk sac around 8.5 to 9 days postcoitus, appears on isolated cells in the head of the embryo around 9.5 dpc, and appears on numerous cells throughout the embryo by day 10.5. The extent of c-fms expression is much greater than for other macrophage-specific genes including lysozyme and a macrophage-specific protein tyrosine phosphatase. Our studies of the cis-acting elements of the c-fms promoter have indicated a key role for collaboration between the macrophage-specific transcription factor, Pu.1, which functions in determining the site of transcription initiation, and other members of the Ets transcription factor family. This is emerging as a common pattern in macrophage-specific promoters. We have shown that two PU box elements alone can function as a macrophage-specific promoter. The activity of both the artifical promoter and the c-fms promoter is activated synergistically by coexpression of Pu.1 and another Ets factor, c-Ets-2. A 3.5kb c-fms exon 2 promoter (but not the 300bp proximal promoter) is also active in a wide diversity of tumor cell lines. The interesting exception is the melanoma cell line K1735, in which the promoter is completely shut down and expression of c-fms causes growth arrest and cell death. The activity of the exon 2 promoter in these nonmacrophages is at least as serum responsive as the classic serum-responsive promoter of the c-fos gene. It is further inducible in nonmacrophages by coexpression of the c-fms product. Unlike other CSF-1/c-fms-responsive promoters, the c-fms promoter is not responsive to activated Ras even when c-Ets-2 is coexpressed. In most lines, production of full length c-fms is prevented by a downstream intronic terminator, but in Lewis lung carcinoma, read-through does occur, and expression of both c-fms and other macrophage-specific genes such as lysozyme and urokinase becomes detectable in conditions of serum deprivation. (C) 1997 Wiley-Liss, Inc.
Resumo:
In this paper we describe the assembly and restriction map of a 1.05-Mb cosmid contig spanning the candidate region for familial Mediterranean fever (FMF), a recessively inherited disorder of inflammation localized to 16p13.3. Using a combination of cosmid walking and screening for P1, PAC, BAG, and YAC clones, we have generated a contig of genomic clones spanning similar to 1050 kb that contains the FMF critical region. The map consists of 179 cosmid, 15 P1, 10 PAC, 3 BAG, and 17 YAC clones, anchored by 27 STS markers. Eight additional STSs have been developed from the similar to 700 kb immediately centromeric to this genomic region. Five of the 35 STSs are microsatellites that have not been previously reported. NotI and EcoRI mapping of the overlapping cosmids, hybridization of restriction fragments from cosmids to one another, and STS analyses have been used to validate the assembly of the contig. Our contig totally subsumes the 250-kb interval recently reported, by founder haplotype analysis, to contain the FMF gene. Thus, our high-resolution clone map provides an ideal resource for transcriptional mapping toward the eventual identification of this disease gene. (C) 1997 Academic Press.
Resumo:
Familial Mediterranean fever (FMF) is a recessively inherited disorder characterized by dramatic episodes of fever and serosal inflammation. This report describes the cloning of the gene likely to cause FMF from a 115-kb candidate interval on chromosome 16p. Three different missense mutations were identified in affected individuals, but not in normals. Haplotype and mutational analyses disclosed ancestral relationships among carrier chromosomes in populations that have been separated for centuries. The novel gene encodes a 3.7-kb transcript that is almost exclusively expressed in granulocytes. The predicted protein, pyrin, is a member of a family of nuclear factors homologous to the Ro52 autoantigen. The cloning of the FMF gene promises to shed light on the regulation of acute inflammatory responses.
Resumo:
Previous research has indicated that biotypes A and B of Colletotrichum gloeosporioides that infect Stylosanthes spp. in Australia are asexual and vegetatively incompatible. Selectable marker genes conferring resistance either to hygromycin or phleomycin were introduced into isolates of these biotypes. Vectors conferring resistance to hygromycin and carrying telomeric sequences from Fusarium oxysporum replicated autonomously in C. gloeosporioides and gave frequencies of transformation 100-times higher than vectors that integrated into the genome. Monoconidial colonies resistant to both antibiotics were recovered when hygromycin-resistant biotype-A transformants carrying an autonomously replicating vector were paired in culture with a phleomycin-resistant biotype-B transformant carrying integrative vector sequences. Molecular analysis of double antibiotic-resistant progeny indicated that they contained the autonomous vector in a biotype-B genetic background, Results indicate that transfer of the autonomous vector had occurred from biotype A to biotype B, demonstrating the potential for transfer of genetic information between these biotypes.
Resumo:
OBJECTIVES: 1. To critically evaluate a variety of mathematical methods of calculating effective population size (Ne) by conducting comprehensive computer simulations and by analysis of empirical data collected from the Moreton Bay population of tiger prawns. 2. To lay the groundwork for the application of the technology in the NPF. 3. To produce software for the calculation of Ne, and to make it widely available.
Resumo:
Sequences from the tuf gene coding for the elongation factor EF-Tu were amplified and sequenced from the genomic DNA of Pirellula marina and Isosphaera pallida, two species of bacteria within the order Planctomycetales. A near-complete (1140-bp) sequence was obtained from Pi. marina and a partial (759-bp) sequence was obtained for I. pallida. Alignment of the deduced Pi. marina EF-Tu amino acid sequence against reference sequences demonstrated the presence of a unique Il-amino acid sequence motif not present in any other division of the domain Bacteria. Pi. marina shared the highest percentage amino acid sequence identity with I. pallida but showed only a low percentage identity with other members of the domain Bacteria. This is consistent with the concept of the planctomycetes as a unique division of the Bacteria. Neither primary sequence comparison of EF-Tu nor phylogenetic analysis supports any close relationship between planctomycetes and the chlamydiae, which has previously been postulated on the basis of 16S rRNA. Phylogenetic analysis of aligned EF-Tu amino acid sequences performed using distance, maximum-parsimony, and maximum likelihood approaches yielded contradictory results with respect to the position of planctomycetes relative to other bacteria, It is hypothesized that long-branch attraction effects due to unequal evolutionary rates and mutational saturation effects may account for some of the contradictions.
Resumo:
POU-IV genes regulate neuronal development in a number of deuterostomes (chordates) and ecdysozoans (arthropods and nematodes). Currently their function and expression in the third bilaterian clade, the Lophotrochozoa, comprising molluscs, annelids and. their affiliates, is unclear. Herein we characterise the developmental expression of HasPOU-IV in the gastropod mollusc, Haliotis asinina. The POU-IV gene is transiently expressed in I I distinct larval territories during the first 3 days of development. HasPOU-IV is first expressed in sets of ventral epidermal cells in the newly hatched trochophore larvae. As larval morphogenesis proceeds, we observe HasPOU-IV transcripts in cells that putatively form a range of sensory systems including chemo- and mechanosensory cells in the foot, cephalic tentacles, the ctenidia. the geosensory statocyst and the eyes. By comparing HasPOU-IV expression with POU-IV genes in other bilaterians we infer that this class of POU-domain genes had an ancestral role in regulating sensory cell development.
Resumo:
Paget disease of bone (PDB) is characterized by increased osteoclast activity and localized abnormal bone remodeling. PDB has a significant genetic component, with evidence of linkage to chromosomes 6p21.3 (PDB1) and 18q21-22 (PDB2) in some pedigrees. There is evidence of genetic heterogeneity, with other pedigrees showing negative linkage to these regions. TNFRSF11A, a gene that is essential for osteoclast formation and that encodes receptor activator of nuclear factor-kappa B (RANK), has been mapped to the PDB2 region. TNFRSF11A mutations that segregate in pedigrees with either familial expansile osteolysis or familial PDB have been identified; however, linkage studies and mutation screening have excluded the involvement of RANK in the majority of patients with PDB. We have excluded linkage, both to PDB1 and to PDB2, in a large multigenerational pedigree with multiple family members affected by PDB. We have conducted a genomewide scan of this pedigree, followed by fine mapping and multipoint analysis in regions of interest. The peak two-point LOD scores from the genomewide scan were 2.75, at D7S507, and 1.76, at D18S70. Multipoint and haplotype analysis of markers flanking D7S507 did not support linkage to this region. Haplotype analysis of markers flanking D18S70 demonstrated a haplotype segregating with PDB in a large subpedigree. This subpedigree had a significantly lower age at diagnosis than the rest of the pedigree (51.2 +/- 8.5 vs. 64.2 +/- 9.7 years; P = .0012). Linkage analysis of this subpedigree demonstrated a peak two-point LOD score of 4.23, at marker D18S1390 (theta = 0), and a peak multipoint LOD score of 4.71, at marker D18S70. Our data are consistent with genetic heterogeneity within the pedigree and indicate that 18q23 harbors a novel susceptibility gene for PDB.
Resumo:
Mental retardation and epilepsy often occur together. They are both heterogeneous conditions with acquired and genetic causes. Where causes are primarily genetic, major advances have been made in unraveling their molecular basis. The human X chromosome alone is estimated to harbor more than 100 genes that, when mutated, cause mental retardation(1). At least eight autosomal genes involved in idiopathic epilepsy have been identified(2), and many more have been implicated in conditions where epilepsy is a feature. We have identified mutations in an X chromosome-linked, Aristaless-related, homeobox gene (ARX), in nine families with mental retardation (syndromic and nonspecific), various forms of epilepsy, including infantile spasms and myoclonic seizures, and dystonia. Two recurrent mutations, present in seven families, result in expansion of polyalanine tracts of the ARX protein. These probably cause protein aggregation, similar to other polyalanine(3) and polyglutamine(4) disorders. In addition, we have identified a missense mutation within the ARX homeodomain and a truncation mutation. Thus, it would seem that mutation of ARX is a major contributor to X-linked mental retardation and epilepsy.
Resumo:
In addition to a gene with major effect, minor genes were found to contribute to the genetic regulation of foliar resistance to Ascochyta blight in two crosses between two resistant and one susceptible lentil cultivars (lines). This was established by comparing inbred lines with and without the major resistance gene. The effects of minor genes were not large enough to change the phenotypic performance determined by its major gene qualitatively (from resistant to susceptible, or vice versa) based on the measurement scale used. However, they did substantially and significantly modify the resistance level. The major gene for foliar resistance was linked to the gene(s) for seed infection rate and/or had a positive pleiotrophic effect on seed infection rate. Similarly, the major gene for foliar resistance was linked to the gene(s) for seed yield/plant in disease free environments and/or had negative pleiotrophic effects on yield/plant. Selection for resistance and yield among inbreds with the same major resistance gene may be necessary to enhance the resistance level, and to reduce the negative effect on yield of the major resistance gene.
Resumo:
The choice of genotyping families vs unrelated individuals is a critical factor in any large-scale linkage disequilibrium (LD) study. The use of unrelated individuals for such studies is promising, but in contrast to family designs, unrelated samples do not facilitate detection of genotyping errors, which have been shown to be of great importance for LD and linkage studies and may be even more important in genotyping collaborations across laboratories. Here we employ some of the most commonly-used analysis methods to examine the relative accuracy of haplotype estimation using families vs unrelateds in the presence of genotyping error. The results suggest that even slight amounts of genotyping error can significantly decrease haplotype frequency and reconstruction accuracy, that the ability to detect such errors in large families is essential when the number/complexity of haplotypes is high (low LD/common alleles). In contrast, in situations of low haplotype complexity (high LD and/or many rare alleles) unrelated individuals offer such a high degree of accuracy that there is little reason for less efficient family designs. Moreover, parent-child trios, which comprise the most popular family design and the most efficient in terms of the number of founder chromosomes per genotype but which contain little information for error detection, offer little or no gain over unrelated samples in nearly all cases, and thus do not seem a useful sampling compromise between unrelated individuals and large families. The implications of these results are discussed in the context of large-scale LD mapping projects such as the proposed genome-wide haplotype map.