999 resultados para 040202 Inorganic Geochemistry


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Concerns regarding groundwater contamination with nitrate and the long-term sustainability of groundwater resources have prompted the development of a multi-layered three dimensional (3D) geological model to characterise the aquifer geometry of the Wairau Plain, Marlborough District, New Zealand. The 3D geological model which consists of eight litho-stratigraphic units has been subsequently used to synthesise hydrogeological and hydrogeochemical data for different aquifers in an approach that aims to demonstrate how integration of water chemistry data within the physical framework of a 3D geological model can help to better understand and conceptualise groundwater systems in complex geological settings. Multivariate statistical techniques(e.g. Principal Component Analysis and Hierarchical Cluster Analysis) were applied to groundwater chemistry data to identify hydrochemical facies which are characteristic of distinct evolutionary pathways and a common hydrologic history of groundwaters. Principal Component Analysis on hydrochemical data demonstrated that natural water-rock interactions, redox potential and human agricultural impact are the key controls of groundwater quality in the Wairau Plain. Hierarchical Cluster Analysis revealed distinct hydrochemical water quality groups in the Wairau Plain groundwater system. Visualisation of the results of the multivariate statistical analyses and distribution of groundwater nitrate concentrations in the context of aquifer lithology highlighted the link between groundwater chemistry and the lithology of host aquifers. The methodology followed in this study can be applied in a variety of hydrogeological settings to synthesise geological, hydrogeological and hydrochemical data and present them in a format readily understood by a wide range of stakeholders. This enables a more efficient communication of the results of scientific studies to the wider community.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Lockyer Valley in southeast Queensland, Australia, hosts an economically significant alluvial aquifer system which has been impacted by prolonged drought conditions (~1997 to ~ 2009). Throughout this time, the system was under continued groundwater extraction, resulting in severe aquifer depletion. By 2008, much of the aquifer was at <30% of storage but some relief occurred with rains in early 2009. However, between December 2010 and January 2011, most of southeast Queensland experienced unprecedented flooding, which generated significant aquifer recharge. In order to understand the spatial and temporal controls of groundwater recharge in the alluvium, a detailed 3D lithological property model of gravels, sands and clays was developed using GOCAD software. The spatial distribution of recharge throughout the catchment was assessed using hydrograph data from about 400 groundwater observation wells screened at the base of the alluvium. Water levels from these bores were integrated into a catchment-wide 3D geological model using the 3D geological modelling software GOCAD; the model highlights the complexity of recharge mechanisms. To support this analysis, groundwater tracers (e.g. major and minor ions, stable isotopes, 3H and 14C) were used as independent verification. The use of these complementary methods has allowed the identification of zones where alluvial recharge primarily occurs from stream water during episodic flood events. However, the study also demonstrates that in some sections of the alluvium, rainfall recharge and discharge from the underlying basement into the alluvium are the primary recharge mechanisms of the alluvium. This is indicated by the absence of any response to the flood, as well as the observed old radiocarbon ages and distinct basement water chemistry signatures at these locations. Within the 3D geological model, integration of water chemistry and time-series displays of water level surfaces before and after the flood suggests that the spatial variations of the flood response in the alluvium are primarily controlled by the valley morphology and lithological variations within the alluvium. The integration of time-series of groundwater level surfaces in the 3D geological model also enables the quantification of the volumetric change of groundwater stored in the unconfined sections of this alluvial aquifer during drought and following flood events. The 3D representation and analysis of hydraulic and recharge information has considerable advantages over the traditional 2D approach. For example, while many studies focus on singular aspects of catchment dynamics and groundwater-surface water interactions, the 3D approach is capable of integrating multiple types of information (topography, geological, hydraulic, water chemistry and spatial) into a single representation which provides valuable insights into the major factors controlling aquifer processes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Three dimensional models and groundwater quality are combined to better understand and conceptualise groundwater systems in complex geological settings in the Wairau Plain, Marlborough. Hydrochemical facies, which are characteristic of distinct evolutionary pathways and a common hydrologic history of groundwaters, are identified within geological formations to assess natural water-rock interactions, redox potential and human agricultural impact on groundwater quality in the Wairau Plain.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coal Seam Gas (CSG) production is achieved by extracting groundwater to depressurize coal seam aquifers in order to promote methane gas desorption from coal micropores. CSG waters are characteristically alkaline, have a neutral pH (~7), are of the Na-HCO3-Cl type, and exhibit brackish salinity. In 2004, a CSG exploration company carried out a gas flow test in an exploration well located in Maramarua (Waikato Region, New Zealand). This resulted in 33 water samples exhibiting noteworthy chemical variations induced by pumping. This research identifies the main causes of hydrochemical variations in CSG water, makes recommendations to manage this effect, and discusses potential environmental implications. Hydrochemical variations were studied using Factor Analysis and this was supported with hydrochemical modelling and a laboratory experiment. This reveals carbon dioxide (CO2) degassing as the principal source of hydrochemical variability (about 33%). Factor Analysis also shows that major ion variations could also reflect changes in hydrochemical composition induced by different pumping regimes. Subsequent chloride, calcium, and TDS variations could be a consequence of analytical errors potentially committed during laboratory determinations. CSG water chemical variations due to degassing during pumping can be minimized with good completion and production techniques; variations due to sample degassing can be controlled by taking precautions during sampling, transit, storage and analysis. In addition, the degassing effect observed in CSG waters can lead to an underestimation of their potential environmental effect. Calcium precipitation due to exposure to normal atmospheric pressure results in a 23% increase in SAR values from Maramarua CSG water samples.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This spreadsheet calculates carbonate speciation using carbonate equilibrium equations at standard conditions (T=25°C) with ionic strength corrections. The user will typically be able to calculate the different carbonate species by entering total alkalinity and pH. This spreadsheet contains additional tools to calculate the Langelier Index for calcium and the SAR of the water. Note that in this last calculation the potential for calcium precipitation is not taken into account. The last tool presented here is a carbonate speciation tool in open systems (e.g. open to the atmosphere) which takes into account atmospheric pressure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

REE analyses were performed on authigenic illitic clay. minerals from Late Permian mudrocks, sandstones and bentonites from the Bowen Basin (Australia). The mixed-layer illite-smectite exhibit REE patterns with an obvious fractionation of the HREE from the LREE and MREE, which is an apparent function of degree of illitization reaction. The highly illitic (R greater than or equal to 3) illite-smectite from the northern Bowen Basin show a depletion of LREE relative to the less illitic (R=0 and 1) clays. In contrast, an enrichment of HREE for the illite-rich clays relative to less. illitic clays is evident for the southern Bowen Basin samples. The North American Shale Composite-normalized (La/Lu)(sn) ratios show negative correlations with the illite content in illite-smectite and positive correlations with the delta(18)O values of the clays for both the northern and southern Bowen Basin samples. These correlations indicate that the increasing depletion of LREE in hydrothermal fluids is a function of increasing water/rock ratios in the northern Bowen Basin. Good negative correlations between (La/Lu)(sn) ratios and illite content in illite-smectite from the southern Bowen Basin suggest the involvement of fluids with higher alkalinity and higher pH in low water/ rock ratio conditions. Increasing HREE enrichment with delta(18)O decrease indicates the effect of increasing temperature at low water/rock ratios in the southern Bowen Basin. Results of the present study confirm the conclusions of some earlier studies suggesting that REE in illitic clay minerals are mobile and fractionated during illitization and that this fact should be considered in studies of sedimentary processes and in identifying provenance. Moreover, our results show that REE systematic of illitic clay minerals can be applied as an useful technique to gain information about physico-chemical conditions during thermal and fluid flow events in certain sedimentary basins. (C) 2003 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nine samples of supergene goethite (FeOOH) from Brazil and Australia were selected to rest the suitability of this mineral for (U-Th)/He dating. Measured He ages ranged from 61 to 8 Ma and were reproducible to better than a few percent despite very large Variations in [U] and [Th]. In all Samples with internal stratigraphy or independent age constraints, the He ages corroborated the expected relationship's. These data demonstrate that internally consistent He ages can be obtained on goethite. but do not prove quantitative 4 He retention. To assess possible diffusive He loss, stepped-heating experiments were performed on two goethite samples that were subjected to proton irradiation to produce a homogeneous distribution of spallogenic He-3. The He-3 release pattern indicates the presence of at least two diffusion domains, one with high helium retentivity and the other with very low retentivity at Earth surface conditions. The low retentivity domain, which accounts for similar to 5% of He-3, contains no natural He-4 and may represent poorly crystalline or intergranular material which has lost all radiogenic He-4 by diffusion in nature. Diffusive loss of He-3 from the high retentivity domain is independent of the macroscopic dimensions of the analyzed polycrystalline aggregate, so probably represents diffusion from individual micrometer-size goethite crystals. The He-2/He-3 evolution during the incremental heating experiments shows that the high retentivity domain has retained 90%-95% of its radiogenic helium. This degree of retentivity is in excellent agreement with that independently predicted from the helium diffusion coefficients extrapolated to Earth surface temperature and held for the appropriate duration. Considering both the high and low retentivity domains, these data indicate that one of the samples retained 90% of its radiogenic He-4 over 47.5 Ma and the other retained 86% over 12.3 Ma. Thus while diffusive-loss corrections to supergene goethite He ages are required. these initial results indicate that the corrections are not extremely large and can be rigorously quantified using the proton-irradiation He-4/He-3 method. Copyright (C) 2005 Elsevier Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

(U-Th)/He dating of late-stage authigenic goethite, combined with corrections for diffusive loss of He-4 by the He-4/He-3 methodology, reveals strong correlation between a sample's age and its depth in ferruginized channel sediments from the Yandicoogina deposit, Western Australia. Corrected ages, ranging from ca. 18 Ma near the surface to ca. 5 Ma at the bottom of the profile, indicate that ferruginization of the aggraded channels becomes progressively younger with depth. This trend is consistent with goethite precipitation at the groundwater-atmosphere interface during water table drawdown driven by the aridification of Western Australia during the Neogene. The results demonstrate that the (U-Th)/He system is ideal for dating goethite if diffusive loss corrections are applied. The approach is suitable for dating weathering reactions on Earth and should also be suitable for dating Fe oxyhydroxides in the Martian regolith.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ar-40/Ar-39 incremental heating ages for twenty one grains of cryptomelane, collected at 0, 42, 45, and 60 in depths in the Cachoeira Mine weathering profile, Minas Gerais, permit calculating long-term (10 Ma time scale) weathering rate (saprolitization rate) in SE Brazil. Pure well-crystallized cryptomelane grains with high K contents (3-5 wt.%) yield reliable geochronological results. The Ar-40/Ar-39 plateau ages obtained decrease from the top to the bottom of the profile (12.7 +/- 0.1 to 7.6 +/- 0.1 Ma at surface; 7.6 +/- 0.2 to 6.1 +/- 0.2 Ma at 42 m; and 7.1 +/- 0.2 to 5.9 +/- 0.1 Ma at 45 in; 6.6 +/- 0.1 to 5.2 +/- 0.1 Ma at 60 in), yielding a weathering front propagation rate of 8.9 +/- 1.1 m/m.y. From the geochronological results and the mineral transformations implicit by the current mineralogy in the weathering profiles, it is possible to calculate the saprolitization rate for the Cachoeira Mine lithologies and for adjacent weathering profiles developed on granodiorites and scbists. The measured weathering front propagation rate yields a saprolitization rate of 24.9 +/- 3.1 t/km(2)/yr. This average long-term (> 10 Ma) saprolitization rate is consistent with mass balance calculations results for present saprolitization rates in weathering watersheds. These results are also consistent with longterm saprolitization rates estimated by combining cosmogenic isotope denudation rates with mass balance calculations. (c) 2005 Elsevier B.V All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sediment samples collected at DSDP Leg 96 Mississippi Fan Sites 615, 616, 620, 621, and 623, Orca Basin Site 618, and Pigmy Basin Site 619 were analyzed for 22 major, minor, and trace elements. This study was undertaken to document the downhole variability in inorganic geochemistry between sites. The mineralogy of the clays, including those from Sites 614, 617, and 622 on the fan, was determined by X-ray diffraction to define the principal clay minerals present at the sites, examine any downhole trends in clay mineralogy, and aid in the interpretation of the geochemical signature of the sediments. Clay mineral composition at all the sites is smectite:illite:chlorite:kaolinite in the approximate percentage ratio 50:20:20:10. Geochemical results indicate only slight variation between and within the sites, with the exception of a discrete unit of carbonates that occurs near the bottom of Site 615. Variation in the major, minor, and trace element composition can be explained by a change in the relative abundance of quartz, clay minerals, and carbonates.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Integrated Ocean Drilling Program (IODP) Expedition 302 (Arctic Coring Expedition, ACEX) recovered a unique sediment record from the central Arctic Ocean, revealing that this region underwent major environmental fluctuations since the Late Cretaceous. Major and trace element composition of 1,300 samples were determined using X-ray fluorescence (XRF). The results show significant compositional variability of the sediments with depth that can be attributed to changes in (a) provenance and pathways of detrital material, (b) paleoenvironmental conditions and depositional processes, and (c) diagenetic overprint of the primary record. In addition to existing lithological units, we introduce new geochemical units for a more process-related approach interpreting the ACEX record. In detail, via the geochemical signature of Siberian flood basalts we are able to reconstruct the discontinuous rifting and deepening of the central Lomonosov Ridge during the Paleogene, accompanied by changing current regimes and the onset of sea ice. Eocene biosiliceous sedimentation took place in a relatively shallow setting under predominantly anoxic bottom water conditions, causing a positive anoxia-productivity feedback, although water column stratification was repeatedly interrupted by ventilation events. Anoxic to sulfidic conditions were even more extreme after biosilica production ceased, and significant amounts of pyrite were deposited on the Lomonosov Ridge. Especially in organic matter-rich Paleogene deposits, diagenetic processes obscured the paleoenvironmental signals. Fundamental environmental changes occurred in the Middle Eocene, but geochemical and micropaleontological proxies point not to the identical sediment depth. After approximately 26 Ma of non-deposition or erosion, the Middle Miocene record shows the transition to dominantly oxic bottom water conditions, although suboxic diagenesis seemingly affected these deposits.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Samples of sediments and rocks collected at DSDP Sites 530 and 532 were analyzed for 44 major, minor, and trace elements for the following purposes: (1) to document the downhole variability in geochemistry within and between lithologic units; (2) to document trace-element enrichment, if any, in Cretaceous organic-carbon-rich black shales at Site 530; (3) to document trace-element enrichment, if any, in Neogene organic-carbon-rich sediments at Site 532; (4) to document trace-element enrichment, if any, in red claystone above basalt basement at Site 530 that might be attributed to hydrothermal activity or weathering of basalt. Results of the geochemical analyses showed that there are no significant enrichments of elements in the organic-carbon-rich sediments at Site 532, but a number of elements, notably Cd, Co, Cr, Cu, Mo, Ni, Pb, V, and Zn, are enriched in the Cretaceous black shales. These elements have different concentration gradients within the black-shale section, however, which suggests that there was differential mobility of trace elements during diagenesis of interbedded more-oxidized and less-oxidized sediments. There is little or no enrichment of elements from hydrothermal activity in the red claystone immediately overlying basalt basement at Site 530, but slight enrichments of several elements in the lowest meter of sediment may be related to subsea weathering of basalt