999 resultados para 0402 Geochemistry
Resumo:
Acid drainage influence on the water and sediment quality was investigated in a coal mining area (southern Brazil). Mine drainage showed pH between 3.2 and 4.6 and elevated concentrations of sulfate, As and metals, of which, Fe, Mn and Zn exceeded the limits for the emission of effluents stated in the Brazilian legislation. Arsenic also exceeded the limit, but only slightly. Groundwater monitoring wells from active mines and tailings piles showed pH interval and chemical concentrations similar to those of mine drainage. However, the river and ground water samples of municipal public water supplies revealed a pH range from 7.2 to 7.5 and low chemical concentrations, although Cd concentration slightly exceeded the limit adopted by Brazilian legislation for groundwater. In general, surface waters showed large pH range (6 to 10.8), and changes caused by acid drainage in the chemical composition of these waters were not very significant. Locally, acid drainage seemed to have dissolved carbonate rocks present in the local stratigraphic sequence, attenuating the dispersion of metals and As. Stream sediments presented anomalies of these elements, which were strongly dependent on the proximity of tailings piles and abandoned mines. We found that precipitation processes in sediments and the dilution of dissolved phases were responsible for the attenuation of the concentrations of the metals and As in the acid drainage and river water mixing zone. In general, a larger influence of mining activities on the chemical composition of the surface waters and sediments was observed when enrichment factors in relation to regional background levels were used.
Resumo:
This work aims at the geochemical study of Pitinga cryolite mineralization through REE and Y analyses in disseminated and massive cryolite ore deposits, as well as in fluorite occurrences. REE signatures in fluorite and cryolite are similar to those in the Madeira albite granite. The highest ΣREE values are found in magmatic cryolite (677 to 1345 ppm); ΣREE is lower in massive cryolite. Average values for the different cryolite types are 10.3 ppm, 6.66 ppm and 8.38 ppm (for nucleated, caramel and white types, respectively). Disseminated fluorite displays higher ΣREE values (1708 and 1526ppm) than fluorite in late veins(34.81ppm). Yttrium concentration is higher in disseminated fluorite and in magmatic cryolite. The evolution of several parameters (REEtotal, LREE/HREE, Y) was followed throughout successive stages of evolution in albite granites and associated mineralization. At the end of the process, late cryolite was formed with low REEtotal content. REE data indicate that the MCD was formed by, and the disseminated ore enriched by (additional formation of hydrothermal disseminated cryolite), hydrothermal fluids, residual from albite granite. The presence of tetrads is poorly defined, although nucleated, caramel and white cryolite types show evidence for tetrad effect.
Resumo:
This article reports major results from collaborative research between France and Brazil on soil and water systems, carried out in the Upper Amazon Basin. It reveals the weathering processes acting in the partly inundated, low elevation plateaus of the Basin, mostly covered by evergreen forest. Our findings are based on geochemical data and mineral spectroscopy that probe the crystal chemistry of Fe and Al in mineral phases (mainly kaolinite, Al- and Fe-(hydr)oxides) of tropical soils (laterites). These techniques reveal crystal alterations in mineral populations of different ages and changes of metal speciation associated with mineral or organic phases. These results provide an integrated model of soil formation and changes (from laterites to podzols) in distinct hydrological compartments of the Amazon landscapes and under altered water regimes. (C) 2010 Academie des sciences. Published by Elsevier Masson SAS. All rights reserved.
Resumo:
Mineralogical, hydrochemical and S isotope data were used to constrain hydrogeochemical processes that produce acid mine drainage from sulfidic waste at the historic Mount Morgan Au–Cu mine, and the factors controlling the concentration of SO4 and environmentally hazardous metals in the nearby Dee River in Queensland, Australia. Some highly contaminated acid waters, with metal contents up to hundreds of orders of magnitude greater than the Australia–New Zealand environmental standards, by-pass the water management system at the site and drain into the adjacent Dee River. Mine drainage precipitates at Mt. Morgan were classified into 4 major groups and were identified as hydrous sulfates and hydroxides of Fe and Al with various contents of other metals. These minerals contain adsorbed or mineralogically bound metals that are released into the water system after rainfall events. Sulfate in open pit water and collection sumps generally has a narrow range of S isotope compositions (δ34S = 1.8–3.7‰) that is comparable to the orebody sulfides and makes S isotopes useful for tracing SO4 back to its source. The higher δ34S values for No. 2 Mill Diesel sump may be attributed to a difference in the source. Dissolved SO4 in the river above the mine influence and 20 km downstream show distinctive heavier isotope compositions (δ34S = 5.4–6.8‰). The Dee River downstream of the mine is enriched in 34S (δ34S = 2.8–5.4‰) compared with mine drainage possibly as a result of bacterial SO4 reduction in the weir pools, and in the water bodies within the river channel. The SO4 and metals attenuate downstream by a combination of dilution with the receiving waters, SO4 reduction, and the precipitation of Fe and Al sulfates and hydroxides. It is suggested here that in subtropical Queensland, with distinct wet and dry seasons, temporary reducing environments in the river play an important role in S isotope systematics
Resumo:
Thermogravimetrically-determined carbon dioxide reactivities of chars formed from New Zealand coals, ranging in rank from lignite to high volatile bituminous, vary from 0.12 to 10.63 mg/h/mg on a dry, ash-free basis. The lowest rank subbituminous coal chars have similar reactivities to the lignite coal chars. Calcium content of the char shows the strongest correlation with reactivity, which increases as the calcium content increases. High calcium per se does not directly imply a high char reactivity. Organically-bound calcium catalyses the conversion of carbon to carbon monoxide in the presence of carbon dioxide, whereas calcium present as discrete minerals in the coal matrix, e.g., calcite, fails to significantly affect reactivity. Catalytic effects of magnesium, iron, sodium and phosphorous are not as obvious, but can be recognised for individual chars. The thermogravimetric technique provides a fast, reliable analysis that is able to distinguish char reactivity differences between coals, which may be due to any of the above effects. Published by Elsevier Science B.V.
Resumo:
Selected Papers from the 5th International Symposium on Applied Isotope Geochemistry, Heron Island, Great Barrier Reef, Australia, 26–30 May 2003
Resumo:
Trace element concentrations and combined Sr- and Nd-isotope compositions were determined on stromatolitic carbonates (microbialites) from the 2.52 Ga Campbellrand carbonate platform (South Africa). Shale-normalised rare earth element and yttrium patterns of the ancient samples are similar to those of modern seawater in having positive La and Y anomalies and in being depleted in light rare earth elements. In contrast to modem seawater (and microbialite proxies), the 2.52 Ga samples lack a negative Ce anomaly but possess a positive Eu anomaly. These latter trace element characteristics are interpreted to reflect anoxic deep ocean waters where, unlike today, hydrothermal Fe input was not oxidised, and scavenged and rare earth elements were not coprecipitated with Fe-oxyhydroxides. The persistence of a positive Eu anomaly in relatively shallow Campbellrand platform waters indicates a dramatic reversal from hydrothermally dominated (Archaean) to continental erosion-dominated (Phanerozoic) rare earth element flux ratio. The dominant hydrothermal input is also expressed in the initial Sr- and Nd-isotope ratios. There is collinear variation in Sr-Nd systematics, which range from primitive values (Sr-87/Sr-86 of 0.702386 and epsilon (Nd) of +2.1) to more evolved crustal ratios. Mixing calculations show that the range in trace element ratios (e.g., Y/Ho) and initial isotope ratios is not a result of contamination by trapped sediment, but that the chemical band isotopic variation reflects carbonate deposition in an environment where different water masses mixed. Calculated Nd flux ratios yield a hydrothermal input into the 2.52 Ga oceans one order of magnitude larger than continental input. Such a change in flux ratio most likely required substantially reduced continental inputs, which could, in turn, reflect a plate tectonic causation (e.g., reduced topography or expansion of epicontinental seas). Copyright (C) 2001 Elsevier Science Ltd.
Resumo:
The Bandas del Sur Formation preserves a Quaternary extra-caldera record of central phonolitic explosive volcanism of the Las Canadas volcano at Tenerife. Volcanic rocks are bimodal in composition, being predominantly phonolitic pyroclastic deposits, several eruptions of which resulted in summit caldera collapse, alkali basaltic lavas erupted from many fissures around the flanks. For the pyroclastic deposits, there is a broad range of pumice glass compositions from phonotephrite to phonolite. The phonolite pyroclastic deposits are also characterized by a diverse, 7-8-phase phenocryst assemblage (alkali feldspar + biotite + sodian diopside + titanomagnetite + ilmenite + nosean-hauyne + titanite + apatite) with alkali feldspar dominant, in contrast to interbedded phonolite lavas that typically have lower phenocryst contents and lack hydrous phases. Petrological and geochemical data are consistent with fractional crystallization (involving the observed phenocryst assemblages) as the dominant process in the development of phonolite magmas. New stratigraphically constrained data indicate that petrological and geochemical differences exist between pyroclastic deposits of the last two explosive cycles of phonolitic volcanism. Cycle 2 (0.85-0.57 Ma) pyroclastic fall deposits commonly show a cryptic compositional zonation indicating that several eruptions tapped chemically, and probably thermally stratified magma systems. Evidence for magma mixing is most widespread in the pyroclastic deposits of Cycle 3 (0.37-0.17 Ma), which includes the presence of reversely and normally zoned phenocrysts, quenched mafic glass blebs in pumice, banded pumice, and bimodal to polymodal phenocryst compositional populations. Syn-eruptive mixing events involved mostly phonolite and tephriphonolite magmas, whereas a pre-eruptive mixing event involving basaltic magma is recorded in several banded pumice-bearing ignimbrites of Cycle 3. The periodic addition and mixing of basaltic magma ultimately may have triggered several eruptions. Recharge and underplating by basaltic magma is interpreted to have elevated sulphur contents (occurring as an exsolved gas phase) in the capping phonolitic magma reservoir. This promoted nosean-hauyne crystallization over nepheline, elevated SO3 contents in apatite, and possibly resulted in large, climatologically important SO2 emissions.
Resumo:
Geochemical and geochronological analyses of samples of surficial Acre Basin sediments and fossils indicate an extensive fluvial-lacustrine system, occupying this region, desiccated slowly during the last glacial cycle (LGC). This research documents direct evidence for aridity in western Amazonia during the LGC and is important in establishing boundary conditions for LGC climate models as well as in correlating marine and continental (LGC) climate conditions.
Resumo:
Acid mine drainage (AMD) from the Zn-Pb(-Ag-Bi-Cu) deposit of Cerro de Pasco (Central Peru) and waste water from a Cu-extraction plant has been discharged since 1981 into Lake Yanamate, a natural lake with carbonate bedrock. The lake has developed a highly acidic pH of similar to 1. Mean lake water chemistry was characterized by 16,775 mg/L acidity as CaCO(3), 4330 mg/L Fe and 29,250 mg/L SO(4). Mean trace element concentrations were 86.8 mg/L Cu, 493 mg/L Zn, 2.9 mg/L Pb and 48 mg/L As, which did not differ greatly from the discharged AMD. Most elements showed increasing concentrations from the surface to the lake bottom at a maximal depth of 41 m (e.g. from 3581 to 5433 mg/L Fe and 25,609 to 35,959 mg/L SO(4)). The variations in the H and 0 isotope compositions and the element concentrations within the upper 10 m of the water column suggest mixing with recently discharged AMD, shallow groundwater and precipitation waters. Below 15 m a stagnant zone had developed. Gypsum (saturation index, SI similar to 0.25) and anglesite (SI similar to 0.1) were in equilibrium with lake water. Jarosite was oversaturated (SI similar to 1.7) in the upper part of the water column, resulting in downward settling and re-dissolution in the lower part of the water column (SI similar to -0.7). Accordingly, jarosite was only found in sediments from less than 7 m water depth. At the lake bottom, a layer of gel-like material (similar to 90 wt.% water) of pH similar to 1 with a total organic C content of up to 4.40 wet wt.% originated from the kerosene discharge of the Cu-extraction plant and had contaminant element concentrations similar to the lake water. Below the organic layer followed a layer of gypsum with pH 1.5, which overlaid the dissolving carbonate sediments of pH 5.3-7. In these two layers the contaminant elements were enriched compared to lake water in the sequence As < Pb approximate to Cu < Cd < Zn = Mn with increasing depth. This sequence of enrichment was explained by the following processes: (i) adsorption of As on Fe-hydroxides coating plant roots at low pH (up to 3326 mg/kg As), (ii) adsorption at increasing pH near the gypsum/calcite boundary (up to 1812 mg/kg Pb, 2531 mg/kg Cu. and 36 mg/kg Cd), and (iii) precipitation of carbonates (up to 5177 mg/kg Zn and 810 mg/kg Mn: all data corrected to a wet base). The infiltration rate was approximately equal to the discharge rate, thus gypsum and hydroxide precipitation had not resulted in complete clogging of the lake bedrocks. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
A gradual increase in Earth's surface temperatures marking the transition from the late Paleocene to early Eocene (55.8±0.2Ma), represents an extraordinary warming event known as Paleocene-Eocene Thermal Maximum (PETM). Both marine and continental sedimentary records during this period reveal evidences for the massive injection of isotopically light carbon. The carbon dioxide injection from multiple potential sources may have triggered the global warming. The importance of the PETM studies is due to the fact that the PETM bears some striking resemblances to the human-caused climate change unfolding today. Most notably, the culprit behind it was a massive injection of heat-trapping greenhouse gases into the atmosphere and oceans, comparable in volume to what our persistent burning of fossil fuels could deliver in coming centuries. The exact knowledge of what went on during the PETM could help us to foresee the future climate change. The response of the oceanic and continental environments to the PETM is different. Many factors might control the response of the environments to the PETM such as paleogeography, paleotopography, paleoenvironment, and paleodepth. To better understand the mechanisms triggering PETM events, two different environments were studied: 1) shallow marine to inner shelf environment (Wadi Nukhul, Sinai; and the Dababiya GSSP, Luxor, Egypt), and 2) terrestrial environments (northwestern India lignite mines) representing wetland, and fluvial environments (Esplugafreda, Spain) both highlighting the climatic changes observed in continental conditions. In the marine realm, the PETM is characterized by negative ö13Ccar and ô13Corg excursions and shifts in Ô15N to ~0%o values above the P/E boundary and persisting along the interval suggesting a bloom and high production of atmospheric N2-fixers. Decrease in carbonate contents could be due to dissolution and/or dilution by increasing detrital input. High Ti, K and Zr and decreased Si contents at the P/E boundary indicate high weathering index (CIA), which coincides with significant kaolinite input and suggests intense chemical weathering under humid conditions at the beginning of the PETM. Two anoxic intervals are observed along the PETM. The lower one may be linked to methane released from the continental shelf with no change in the redox proxies, where the upper anoxic to euxinic conditions are revealed by increasing U, Mo, V, Fe and the presence of small size pyrite framboids (2-5fim). Productivity sensitive elements (Cu, Ni, and Cd) show their maximum concentrated within the upper anoxic interval suggesting high productivity in surface water. The obtained data highlight that intense weathering and subsequent nutrient inputs are crucial parameters in the chain of the PETM events, triggering productivity during the recovery phase. In the terrestrial environments, the establishment of wetland conditions and consequence continental climatic shift towards more humid conditions led to migration of modern mammals northward following the extension of the tropical belts. Relative ages of this mammal event based on bio-chemo- and paleomagnetic stratigraphy support a migration path originating from Asia into Europe and North America, followed by later migration from Asia into India and suggests a barrier to migration that is likely linked to the timing of the India-Asia collision. In contrast, at Esplugafereda, northeastern Spain, the terrestrial environment reacted differently. Two significant S13C shifts with the lower one linked to the PETM and the upper corresponding to the Early Eocene Thermal Maximum (ETM2); 180/160 paleothermometry performed on two different soil carbonate nodule reveal a temperature increase of around 8°C during the PETM. The prominent increase in kaolinite content within the PETM is linked to increased runoff and/or weathering of adjacent and coeval soils. These results demonstrate that the PETM coincides globally with extreme climatic fluctuations and that terrestrial environments are very likely to record such climatic changes. - La transition Paléocène-Eocène (55,8±0,2 Ma) est marquée par un réchauffement extraordinaire communément appelé « Paleocene-Eocene Thermal Maximum » (PETM). Les données géochimiques caractérisant les sédiments marins et continentaux de cette période indiquent que ce réchauffement a été déclenché par une augmentation massive de CO2 lié à la déstabilisation des hydrates de méthane stockés le long des marges océaniques. L'étude des événements PETM constitue donc un bon analogue avec le réchauffement actuel. Le volume de CO2 émis durant le PETM est comparable avec le CO2 lié à l'activité actuelle humaine. La compréhension des causes du réchauffement du PETM peut être cruciale pour prévoir et évaluer les conséquences du réchauffement anthropogénique, en particulier les répercussions d'un tel réchauffement sur les domaines continentaux et océaniques. De nombreux facteurs entrent en ligne de compte dans le cas du PETM, tels que la paléogéographie, la paléotopographie et les paléoenvironnement. Pour mieux comprendre les réponses environnementales aux événements du PETM, 2 types d'environnements ont été choisis : (1) le domaine marin ouvert mais relativement peu profond (Wadi Nukhul. Sinai, Dababiya, Luxor, Egypte), (2) le milieu continental marécageux humide (mines de lignite, Inde) et fluviatile, semi-aride (Esplugafreda, Pyrénées espagnoles). Dans le domaine marin, le PETM est caractérisé par des excursions négatives du ô13Ccar et ô13Corg et un shift persistant des valeurs de 815N à ~ 0 %o indiquant une forte activité des organismes (bactéries) fixant l'azote. La diminution des carbonates observée durant le PETM peut-être due à des phénomènes de dissolution ou une augmentation des apports terrigènes. Des taux élevés en Ti, K et Zr et une diminution des montants de Si, reflétés par des valeurs des indices d'altération (CIA) qui coïncident avec une augmentation significative des apports de kaolinite impliquent une altération chimique accrue, du fait de conditions plus humides au début du PETM. Deux événements anoxiques globaux ont été mis en évidence durant le PETM. Le premier, situé dans la partie inférieur du PETM, serait lié à la libération des hydrates de méthane stockés le long des talus continentaux et ne correspond pas à des variations significatives des éléments sensibles aux changements de conditions redox. Le second est caractérisé par une augmentation des éléments U, Mo, V et Fe et la présence de petit framboids de pyrite dont la taille varie entre 2 et 5pm. Le second épisode anoxique est caractérisé par une forte augmentation des éléments sensibles aux changements de la productivité (Cu, Ni et Co), indiquant une augmentation de la productivité dans les eaux de surface. Les données obtenues mettent en évidence le rôle crucial joué par l'altération et les apports en nutriments qui en découlent. Ces paramètres sont cruciaux pour la succession des événements qui ont conduit au PETM, et plus particulièrement l'augmentation de la productivité dans la phase de récupération. Durant le PETM, le milieu continental est caractérisé par l'établissement de conditions humides qui ont facilité voir provoqué la migration des mammifères modernes qui ont suivi le déplacement de ces ceintures climatiques. L'âge de cette migration est basé sur des arguments chimiostratigraphiques (isotopes stables), biostratigraphiques et paléomagnétiques. Les données bibliographiques ainsi que celles que nous avons récoltées en Inde, montrent que les mammifères modernes ont d'abord migré depuis l'Asie vers l'Europe, puis dans le continent Nord américain. Ces derniers ne sont arrivés en Inde que plus tardivement, suggérant que le temps de leur migration est lié à la collision Inde-Asie. Dans le Nord-Est de l'Espagne (Esplugafreda), la réponse du milieu continental aux événements PETM est assez différente. Comme en Inde, deux excursions signicatives en ô13C ont été observées. La première correspond au PETM et la seconde est corrélée avec l'optimum thermique de l'Eocène précoce (ETM2). Les isotopes stables de l'oxygène mesurés 2 différents types de nodules calcaires provenant de paléosols suggère une augmentation de 10°C pendant le PETM. Une augmentation simultanée des taux de kaolinite indique une intensification de l'altération chimique et/ou de l'érosion de sols adjacents. Ces résultats démontrent que le PETM coïncide globalement avec des variations climatiques extrêmes qui sont très aisément reconnaissables dans les dépôts continentaux.
Resumo:
Isotopic, geochemical and bulk mineralogical analyses in the Trabakua and Ermua sections, Basque Basin, reveal major changes across the Paleocene-Eocene transition. Expanded sedimentary records exhibit a gradual decrease of 1.0 parts per thousand in delta(13)C values in the lower part of Zone P5 followed by a more rapid 3 parts per thousand negative excursion. The 3 parts per thousand delta(13)C excursion is associated with an abrupt decrease in carbonate sedimentation, increased detrital flux and decreased grain size which suggest changes in marine/atmospheric currents and/or size and structure of the ocean carbon reservoir. The clays recognized at Trabakua record a deep burial diagenesis as indicated by two generations of chlorite, the presence of mixed-layers chlorite-smectite and illite-smectite, the absence of smectite and the near absence of kaolinite. The very low delta(18)O values (<-3.5 parts per thousand) throughout the Trabakua and Ermua sections reflect diagenetic alteration rather than paleotemperatures. Because of deep burial diagenesis and very poorly preserved microfossils, the Trabakua Pass and Ermua sections are not optimal potential stratotypes for the Paleocene-Eocene boundary.
Resumo:
Quartz veins ranging in size from less than 50 cm length and 5 cm width to greater than 10 m in length and 5 m in width are found throughout the Central Swiss Alps. In some cases, the veins are completely filled with milky quartz, while in others, sometimes spectacular void-filling quartz crystals are found. The style of vein filling and size is controlled by host rock composition and deformation history. Temperatures of vein formation, estimated using stable isotope thermometry and mineral equilibria, cover a range of 450 degrees C down to 150 degrees C. Vein formation started at 18 to 20 Ma and continued for over 10 My. The oxygen isotope values of quartz veins range from 10 to 20 permil, and in almost all cases are equal to those of the hosting lithology. The strongly rock-buffered veins imply a low fluid/rock ratio and minimal fluid flow. In order to explain massive, nearly morromineralic quartz formation without exceptionally large fluid fluxes, a mechanism of differential pressure and silica diffusion, combined with pressure solution, is proposed for early vein formation. Fluid inclusions and hydrous minerals in late-formed veins have extremely low delta D values, consistent with meteoric water infiltration. The change from rock-buffered, static fluid to infiltration from above can be explained in terms of changes in the large-scale deformation style occurring between 20 and 15 Ma. The rapid cooling of the Central Alps identified in previous studies may be explained in part, by infiltration of cold meteoric waters along fracture systems down to depths of 10 km or more. An average water flux of 0.15 cm 3 cm(-2)yr(-1) entering the rock and reemerging heated by 40 degrees C is sufficient to cool rock at 10 km depth by 100 degrees C in 5 million years. The very negative delta D values of < -130 permil for the late stage fluids are well below the annual average values measured in meteoric water in the region today. The low fossil delta D values indicate that the Central Alps were at a higher elevation in the Neogene. Such a conclusion is supported by an earlier work, where a paleoaltitude of 5000 meters was proposed on the basis of large erratic boulders found at low elevations far from their origin.
Resumo:
Rare earth elements (REE) and stable isotope compositions (delta C-13 and delta O-18) of shark teeth and phosphatic coprolites were analyzed from the Lower Maastrichtian layers of the El Haria Formation and two sequences of the Paleocene-Eocene (P/E) Chouabine Formation in the Gafsa Basin (south western of Tunisia) in order to trace the sedimentological, climatic and oceanographic conditions. The REE chemistry and their distribution in the two archives are the same for each of the studied layers indicating that the coprolites and shark teeth experienced the same early diagenetic environments. However major differences occur between the Maastrichtian and the P/E reflecting changes in the depositional conditions. The Early Maastrichtian burial environment tended to be more anoxic with REE derived from reduced FeO. While in the P/E the REE patterns mimic the modern oxic-suboxic seawater, the REE source from remineralisation of organic coating could have more significance. The oxygen isotope compositions of the structural phosphates (delta O-18(PO4)) indicate a stable and warm climate during both studied time intervals. A small offset (-0.4 parts per thousand) in the delta O-18 value between the coprolites and shark teeth show minor thermal gradient between bottom and surface water. The pronounced negative shift of 34%. in delta C-13 values recorded in the upper part of the Chouabine Formation was ascribed to the Paleocene-Eocene boundary. At the same time the lack of negative change in the delta O-18 is explained by the semi-closed situation of the Gafsa Basin, which situation also played an important role in the evolution of the organic matters in the sediment resulting in the exceptional low delta C-13 values. (C) 2008 Elsevier B.V. All rights reserved.