982 resultados para 040105 Climatology (excl. Climate Change Processes)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coastal storms, and the strong winds, heavy rains, and high seas that accompany them pose a serious threat to the lives and livelihoods of the peoples of the Pacific basin, from the tropics to the high latitudes. To reduce their vulnerability to the economic, social, and environmental risks associated with these phenomena (and correspondingly enhance their resiliency), decision-makers in coastal communities require timely access to accurate information that affords them an opportunity to plan and respond accordingly. This includes information about the potential for coastal flooding, inundation and erosion at time scales ranging from hours to years, as well as the longterm climatological context of this information. The Pacific Storms Climatology Project (PSCP) was formed in 2006 with the intent of improving scientific understanding of patterns and trends of storm frequency and intensity - “storminess”- and related impacts of these extreme events. The project is currently developing a suite of integrated information products that can be used by emergency managers, mitigation planners, government agencies and decision-makers in key sectors, including: water and natural resource management, agriculture and fisheries, transportation and communication, and recreation and tourism. The PSCP is exploring how the climate-related processes that govern extreme storm events are expressed within and between three primary thematic areas: heavy rains, strong winds, and high seas. To address these thematic areas, PSCP has focused on developing analyses of historical climate records collected throughout the Pacific region, and the integration of these climatological analyses with near-real time observations to put recent weather and climate events into a longer-term perspective.(PDF contains 4 pages)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The fate and cycling of two selected legacy persistent organic pollutants (POPs), PCB 153 and gamma-HCH, in the North Sea in the 21st century have been modelled with combined hydrodynamic and fate and transport ocean models
(HAMSOM and FANTOM, respectively). To investigate the impact of climate variability on POPs in the North Sea in the 21st century, future scenario model runs for three 10-year periods to the year 2100 using plausible levels of both in
situ concentrations and atmospheric, river and open boundary inputs are performed. This slice mode under a moderate scenario (A1B) is sufficient to provide a basis for further analysis. For the HAMSOM and atmospheric forcing, results of the IPCC A1B (SRES) 21st century scenario are utilized, where surface forcing is provided by the REMO downscaling of the ECHAM5 global atmospheric model, and open boundary conditions are provided by the MPIOM global ocean model.
Dry gas deposition and volatilization of gamma-HCH increase in the future relative to the present by up to 20% (in the spring and summer months for deposition and in summer for volatilization). In the water column, total mass of
gamma-HCH and PCB 153 remain fairly steady in all three runs. In sediment,
gamma-HCH increases in the future runs, relative to the present, while PCB 153 in sediment decreases exponentially in all three runs, but even faster in the future, due to the increased number of storms, increased duration of gale wind conditions and increased water and air temperatures, all of which are the result of climate change. Annual net sinks exceed sources at the ends of all periods.
Overall, the model results indicate that the climate change scenarios considered here generally have a negligible influence on the simulated fate and transport of the two POPs in the North Sea, although the increased number and magnitude of storms in the 21st century will result in POP resuspension and ensuing revolatilization events. Trends in emissions from primary and secondary sources will remain the key driver of levels of these contaminants over time.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Processes in the climate system that can either amplify or dampen the climate response to an external perturbation are referred to as climate feedbacks. Climate sensitivity estimates depend critically on radiative feedbacks associated with water vapor, lapse rate, clouds, snow, and sea ice, and global estimates of these feedbacks differ among general circulation models. By reviewing recent observational, numerical, and theoretical studies, this paper shows that there has been progress since the Third Assessment Report of the Intergovernmental Panel on Climate Change in (i) the understanding of the physical mechanisms involved in these feedbacks, (ii) the interpretation of intermodel differences in global estimates of these feedbacks, and (iii) the development of methodologies of evaluation of these feedbacks (or of some components) using observations. This suggests that continuing developments in climate feedback research will progressively help make it possible to constrain the GCMs’ range of climate feedbacks and climate sensitivity through an ensemble of diagnostics based on physical understanding and observations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Our understanding of the climate system has been revolutionized recently, by the development of sophisticated computer models. The predictions of such models are used to formulate international protocols, intended to mitigate the severity of global warming and its impacts. Yet, these models are not perfect representations of reality, because they remove from explicit consideration many physical processes which are known to be key aspects of the climate system, but which are too small or fast to be modelled. The purpose of this paper is to give a personal perspective of the current state of knowledge regarding the problem of unresolved scales in climate models. A recent novel solution to the problem is discussed, in which it is proposed, somewhat counter-intuitively, that the performance of models may be improved by adding random noise to represent the unresolved processes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Radiative forcing and climate sensitivity have been widely used as concepts to understand climate change. This work performs climate change experiments with an intermediate general circulation model (IGCM) to examine the robustness of the radiative forcing concept for carbon dioxide and solar constant changes. This IGCM has been specifically developed as a computationally fast model, but one that allows an interaction between physical processes and large-scale dynamics; the model allows many long integrations to be performed relatively quickly. It employs a fast and accurate radiative transfer scheme, as well as simple convection and surface schemes, and a slab ocean, to model the effects of climate change mechanisms on the atmospheric temperatures and dynamics with a reasonable degree of complexity. The climatology of the IGCM run at T-21 resolution with 22 levels is compared to European Centre for Medium Range Weather Forecasting Reanalysis data. The response of the model to changes in carbon dioxide and solar output are examined when these changes are applied globally and when constrained geographically (e.g. over land only). The CO2 experiments have a roughly 17% higher climate sensitivity than the solar experiments. It is also found that a forcing at high latitudes causes a 40% higher climate sensitivity than a forcing only applied at low latitudes. It is found that, despite differences in the model feedbacks, climate sensitivity is roughly constant over a range of distributions of CO2 and solar forcings. Hence, in the IGCM at least, the radiative forcing concept is capable of predicting global surface temperature changes to within 30%, for the perturbations described here. It is concluded that radiative forcing remains a useful tool for assessing the natural and anthropogenic impact of climate change mechanisms on surface temperature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The 5th Assessment Report (AR5) of the Intergovernmental Panel on Climate Change (IPCC) states with very high certainty that anthropogenic emissions have caused measurable changes in the physical ocean environment. These changes are summarized with special focus on those that are predicted to have the strongest, most direct effects on ocean biological processes; namely, ocean warming and associated phenomena (including stratification and sea level rise) as well as deoxygenation and ocean acidification. The biological effects of these changes are then discussed for microbes (including phytoplankton), plants, animals, warm and cold-water corals, and ecosystems. The IPCC AR5 highlighted several areas related to both the physical and biological processes that required further research. As a rapidly developing field, there have been many pertinent studies published since the cut off dates for the AR5, which have increased our understanding of the processes at work. This study undertook an extensive review of recently published literature to update the findings of the AR5 and provide a synthesized review on the main issues facing future oceans. The level of detail provided in the AR5 and subsequent work provided a basis for constructing projections of the state of ocean ecosystems in 2100 under two the Representative Concentration Pathways RCP4.5 and 8.5. Finally the review highlights notable additions, clarifications and points of departure from AR5 provided by subsequent studies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Climate warming is predicted to cause an increase in the growing season by as much as 30% for regions of the arctic tundra. This will have a significant effect on the physiological activity of the vascular plant species and the ecosystem as a whole. The need to understand the possible physiological change within this ecosystem is confounded by the fact that research in this extreme environment has been limited to periods when conditions are most favorable, mid June–mid August. This study attempted to develop the most comprehensive understanding to date of the physiological activity of seven tundra plant species in the Alaskan Arctic under natural and lengthened growing season conditions. Four interrelated lines of research, scaling from cellular signals to ecosystem processes, set the foundation for this study. ^ I established an experiment looking at the physiological response of arctic sedges to soil temperature stress with emphasis on the role of the hormone abscisic acid (ABA). A manipulation was also developed where the growing season was lengthened and soils were warmed in an attempt to determine the maximum physiological capacity of these seven vascular species. Additionally, the physiological capacities of four evergreens were tested in the subnivean environment along with the potential role anthocyanins play in their activity. The measurements were scaled up to determine the physiological role of these evergreens in maintaining ecosystem carbon fluxes. ^ These studies determined that soil temperature differentials significantly affect vascular plant physiology. ABA appears to be a physiological modifier that limits stomatal processes when root temperatures are low. Photosynthetic capacity was limited by internal plant physiological mechanisms in the face of a lengthened growing season. Therefore shifts in ecosystem carbon dynamics are driven by changes in species composition and biomass production on a per/unit area basis. These studies also found that changes in soil temperatures will have a greater effect of physiological processes than would the same magnitude of change in air temperature. The subnivean environment exhibits conditions that are favorable for photosynthetic activity in evergreen species. These measurements when scaled to the ecosystem have a significant role in limiting the system's carbon source capacity. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Climate change is one of the most important and urgent issues of our time. Since 2006, China has overtaken the United States as the world’s largest greenhouse gas (GHG) emitter. China’s role in an international climate change solution has gained increased attention. Although much literature has addressed the functioning, performance, and implications of existing climate change mitigation policies and actions in China, there is insufficient literature that illuminates how the national climate change mitigation policies have been formulated and shaped. This research utilizes the policy network approach to explore China’s climate change mitigation policy making by examining how a variety of government, business, and civil society actors have formed networks to address environmental contexts and influence the policy outcomes and changes. The study is qualitative in nature. Three cases are selected to illustrate structural and interactive features of the specific policy network settings in shaping different policy arrangements and influencing the outcomes in the Chinese context. The three cases include the regulatory evolution of China’s climate change policy making; the country’s involvement in the Clean Development Mechanism (CDM) activity, and China’s exploration of voluntary agreement through adopting the Top-1000 Industrial Energy Conservation Program. The historical analysis of the policy process uses both primary data from interviews and fieldwork, and secondary data from relevant literature. The study finds that the Chinese central government dominates domestic climate change policy making; however, expanded action networks that involve actors at all levels have emerged in correspondence to diverse climate mitigation policy arrangements. The improved openness and accessibility of climate change policy network have contributed to its proactive engagement in promoting mitigation outcomes. In conclusion, the research suggests that the policy network approach provides a useful tool for studying China’s climate change policy making process. The involvement of various types of state and non-state actors has shaped new relations and affected the policy outcomes and changes. In addition, through the cross-case analysis, the study challenges the “fragmented authoritarianism” model and argues that this once-influential model is not appropriate in explaining new development and changes of policy making processes in contemporary China.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Forests have a prominent role in carbon storage and sequestration. Anthropogenic forcing has the potential to accelerate climate change and alter the distribution of forests. How forests redistribute spatially and temporally in response to climate change can alter their carbon sequestration potential. The driving question for this research was: How does plant migration from climate change impact vegetation distribution and carbon sequestration potential over continental scales? Large-scale simulation of the equilibrium response of vegetation and carbon from future climate change has shown relatively modest net gains in sequestration potential, but studies of the transient response has been limited to the sub-continent or landscape scale. The transient response depends on fine scale processes such as competition, disturbance, landscape characteristics, dispersal, and other factors, which makes it computational prohibitive at large domain sizes. To address this, this research used an advanced mechanistic model (Ecosystem Demography Model, ED) that is individually based, but pseudo-spatial, that reduces computational intensity while maintaining the fine scale processes that drive the transient response. First, the model was validated against remote sensing data for current plant functional type distribution in northern North America with a current climatology, and then a future climatology was used to predict the potential equilibrium redistribution of vegetation and carbon from future climate change. Next, to enable transient calculations, a method was developed to simulate the spatially explicit process of dispersal in pseudo-spatial modeling frameworks. Finally, the new dispersal sub-model was implemented in the mechanistic ecosystem model, and a model experimental design was designed and completed to estimate the transient response of vegetation and carbon to climate change. The potential equilibrium forest response to future climate change was found to be large, with large gross changes in distribution of plant functional types and comparatively smaller changes in net carbon sequestration potential for the region. However, the transient response was found to be on the order of centuries, and to depend strongly on disturbance rates and dispersal distances. Future work should explore the impact of species-specific disturbance and dispersal rates, landscape fragmentation, and other processes that influence migration rates and have been simulated at the sub-continent scale, but now at continental scales, and explore a range of alternative future climate scenarios as they continue to be developed.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The human rights implications of climate change are increasingly gaining attention, with wider international acknowledgement that climate change poses a real threat to human rights. This paper considers the impact of climate change on human rights, looking particularly at the experiences of Torres Strait Islanders in northern Australia. It argues that human rights law offers a guiding set of principles which can help in developing appropriate strategies to combat climate change. In particular, the normative principles embodied in environmental rights can be useful in setting priorities and evaluating policies in response to climate change. The paper also argues that a human rights perspective can help address the underlying injustice of climate change: that it is the people who have contributed least to the problem who will bear the heaviest burden of its effects.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

About this book: Over 100 authors present 25 contributions on the impacts of global change on terrestrial ecosystems including:key processes of the earth system such as the CO2 fertilization effect, shifts in disturbances and biome distribution, the saturation of the terrestrial carbon sink, and changes in functional biodiversity,ecosystem services such the production of wheat, pest control, and carbon storage in croplands, and sensitive regions in the world threaten by rapid changes in climate and land use such as high latitudes ecosystems, tropical forest in Southeast Asia, and ecosystems dominated by Monsoon climate.The book also explores new research developments on spatial thresholds and nonlinearities, the key role of urban development in global biogeochemical processes, and the integration of natural and social sciences to address complex problems of the human-environment system.