281 resultados para 0161
Resumo:
Monoclonal antibodies raised against human serum retinol-binding protein (hRBP) were used as probes for the study of the antigenic determinants of hRBP and those shared with the same protein from other species. The antibodies could be classified into four distinct groups and react with the homologous proteins from the rat as well as the rabbit sera. Three of these antibodies recognize sequential or continuous epitopes while the remaining antibody is directed against a discontinuous or conformational epitope. By chemical cleavage with cyanogen bromide, the domains recognized by the monoclonal antibodies could be delineated. By solid-phase synthetic approach, the core sequences recognized by two of these monoclonal antibodies were identified to amino acid sequences 45–51 and 128–131 of the primary amino acid sequence of hRBP.
Resumo:
Due to rapid improvements in on-board instrumentation and atmospheric observation systems, in most cases, aircraft are able to steer clear of regions of adverse weather. However, they still encounter unexpected bumpy flight conditions in regions away from storms and clouds. This is the phenomenon of clear air turbulence (CAT), which has been a challenge to our understanding as well as efforts at prediction. While most of such cases result in mild discomfort, a few cases can be violent leading to serious injuries to passengers and damage to the aircraft. The underlying physical mechanisms have been sought to be explained in terms of fluid dynamic instabilities and waves in the atmosphere. The main mechanisms which have been proposed are: (i) Kelvin-Helmholtz instability of shear layers, (ii) waves generated from flow over mountains, (iii) inertia-gravity waves from clouds and other sources, (iv) spontaneous imbalance theory and (v) horizontal vortex tubes. This has also undergone a change over the years. We present an overview of the mechanisms proposed and their implications for prediction.
Resumo:
We completely classify constant mean curvature hypersurfaces (CMC) with constant δ-invariant in the unit 4-sphere S4 and in the Euclidean 4-space E4.