1000 resultados para [CO3]2-
Resumo:
O crescimento da hidroxiapatita - HA, tanto no meio biológico quanto em soluções aquosas como a Synthetic Body Fluid - SBF, ocorre em meio contendo, além dos elementos Ca e P, elementos-traços essenciais tais como: Mg2+, HCO3-, K+ e Na+. Alguns destes elementos são conhecidos como inibidores do crescimento da HA, como Mg2+ e HCO3-. Neste trabalho, estudou-se a influência dos íons K+ e Mg2+ na formação de apatitas sobre substratos metálicos de Ti c.p. previamente tratados com NaOH 5M. Os efeitos destes íons no recobrimento obtidos, antes e após o tratamento térmico a 800ºC, foram analisados por microscopia eletrônica de varredura - MEV, espectroscopia de energia dispersiva de raios-X - EDX, difratometria de raios-X - DRX e espectroscopia no infravermelho - IV e mostraram que o efeito inibitório do Mg2+ na formação da HA se manifesta após o tratamento térmico. Diferentemente, o crescimento cristalino da HA não foi afetado pela presença do íon K+. Além disso, a formação de apatita carbonatada se deu também em soluções que não continham o íon CO3(2-) em sua composição.
Assessment of hydrochemical quality of ground water under some urban areas within sana'a secreteriat
Resumo:
Groundwater from nine wells of three different districts, located at Sana'a secretariat was analyzed for hydrochemical quality assessment. Measurements of water quality parameters including pH, EC, CO3(2-), HCO3-, Cl-, NO3-, SO4(2-), Ca2+, Mg2+, Fe3+, K+, and Na+ were carried out . Classification of the groundwater samples according to Cl, SO4(2-), CO3(2-) and HCO3-, hardness (H), total dissolved solids (TDS), base-exchange, and meteoric genesis was demonstrated. Suitability of ground water samples for irrigation and industrial uses according to sodium adsorption ration (SAR), ratio of dissolved sodium (RDS), residual sodium carbonate (RSC) and saturation index (SI) was also investigated. The results of this study showed that almost all ground water samples were of good quality that makes them suitable for drinking and domestic uses. Results also indicated that even though some of the ground water samples were suitable for irrigation purposes, almost all of them were found not be good for industrial uses. Despite all drawbacks of the sewerage system built around Sana'a secretariat at the beginning of the first decade of the third millennium, the results of this study indicate that there is scope of significant improvement in Sana'a secretariat ground water quality.
Resumo:
324 p.
Resumo:
The natural gas is an alternative source of energy which is found underground in porous and permeable rocks and being associated or not to the oil. Its basic composition includes methane, other hydrocarbon and compounds such as carbon dioxide, nitrogen, sulphidric gas, mercaptans, water and solid particles. In this work, the dolomite mineral, a double carbonate of calcium and magnesium whose the chemical formula is CaMg(CO3)2, was evaluated as adsorbent material. The material was characterized by granulometric analysis, X-ray fluorescence, X-ray diffraction, thermogravimetric analysis, differential thermal analysis, specific surface area, porosity, scanning electronic microscopy and infrared spectroscopy. Then the material was functionalized with diethanolamine (dolomite+diethanolamine) and diisopropylamine (dolomite+diisopropylamine). The results indicated that the adsorbents presented appropriate physiochemical characteristics for H2S adsorption. The adsorption tests were accomplished in a system coupled to a gas chromatograph and the H2S monitoring in the output of the system was accomplished by a pulsed flame photometric detector (PFPD). The adsorbents presented a significant adsorption capacity. Among the analyzed adsorbents, the dolomite+diethanolamine presented the best capacity of adsorption. The breakthrough curves obtained proved the efficiency of this process
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
O crescimento da hidroxiapatita - HA, tanto no meio biológico quanto em soluções aquosas como a Synthetic Body Fluid - SBF, ocorre em meio contendo, além dos elementos Ca e P, elementos-traços essenciais tais como: Mg2+, HCO3-, K+ e Na+. Alguns destes elementos são conhecidos como inibidores do crescimento da HA, como Mg2+ e HCO3-. Neste trabalho, estudou-se a influência dos íons K+ e Mg2+ na formação de apatitas sobre substratos metálicos de Ti c.p. previamente tratados com NaOH 5M. Os efeitos destes íons no recobrimento obtidos, antes e após o tratamento térmico a 800ºC, foram analisados por microscopia eletrônica de varredura - MEV, espectroscopia de energia dispersiva de raios-X - EDX, difratometria de raios-X - DRX e espectroscopia no infravermelho - IV e mostraram que o efeito inibitório do Mg2+ na formação da HA se manifesta após o tratamento térmico. Diferentemente, o crescimento cristalino da HA não foi afetado pela presença do íon K+. Além disso, a formação de apatita carbonatada se deu também em soluções que não continham o íon CO3(2-) em sua composição.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Química - IQ
Resumo:
We present results of ultrasonic measurements on a single crystal of the distorted diamond-chain compound azurite Cu-3(CO3)(2)(OH)(2). Pronounced elastic anomalies are observed in the temperature dependence of the longitudinal elastic mode c(22) which can be assigned to the relevant magnetic interactions in the system and their couplings to the lattice degrees of freedom. From a semiquantitative analysis of the magnetic contribution to c(22) the magnetoelastic coupling G = partial derivative J(2)/partial derivative epsilon(b) can be estimated, where J(2) is the intradimer coupling constant and epsilon(b) the strain along the intrachain b axis. We find an exceptionally large coupling constant of | G| similar to 3650 K highlighting an extraordinarily strong sensitivity of J(2) against changes of the b-axis lattice parameter. These results are complemented by measurements of the hydrostatic pressure dependence of J2 by means of thermal expansion and magnetic susceptibility measurements performed both at ambient and finite hydrostatic pressure. We propose that a structural peculiarity of this compound, in which Cu2O6 dimer units are incorporated in an unusually stretched manner, is responsible for the anomalously large magnetoelastic coupling.
Resumo:
Pós-graduação em Ciência e Tecnologia de Materiais - FC
Resumo:
Pós-graduação em Ciência e Tecnologia de Materiais - FC
Resumo:
Dolomite [CaMg(CO3)2] is an intolerable impurity in phosphate ores due to its MgO content. Traditionally, the Florida phosphate industry has avoided mining high-MgO phosphate reserves due to the lack of an economically viable process for removal of dolomite. However, as the high grade phosphate reserves become depleted, more emphasis is being put on the development of a cost effective method for separating dolomite from high-MgO phosphate ores. In general, the phosphate industry demands a phosphate concentrate containing less than 1%MgO. Dolomite impurities have mineralogical properties that are very similar to the desired phosphate minerals (francolite), making the separation of the two minerals very difficult. Magnesium is primarily found as distinct dolomite-rich pebbles, very fine dolomite inclusions in predominately francolite pebbles, and magnesium substituted into the francolite structure. Jigging is a gravity separation process that attempts to take advantage of the density difference between the dolomite and francolite pebbles. A unique laboratory scale jig was designed and built at Michigan Tech for this study. Through a series of tests it was found that a pulsation rate of 200 pulse/minute, a stroke length of 1 inch, a water addition rate of 0.5gpm, and alumina ragging balls were optimum for this study. To investigate the feasibility of jigging for the removal of dolomite from phosphate ore, two high-MgO phosphate ores were tested using optimized jigging parameters: (1) Plant #1 was sized to 4.00x0.85mm and contained 1.55%MgO; (2) Plant #2 was sized to 3.40mmx0.85mm and contained 3.07% MgO. A sample from each plant was visually separated by hand into dolomite and francolite rich fractions, which were then analyzed to determine the minimum achievable MgO levels. For Plant #1 phosphate ore, a concentrate containing 0.89%MgO was achieved at a recovery of 32.0%BPL. For Plant #2, a phosphate concentrate containing 1.38%MgO was achieved at a recovery of 74.7%BPL. Minimum achievable MgO levels were determined to be 0.53%MgO for Plant #1 and 1.15%MgO for Plant #2.
Resumo:
The Continental porphyry Cu‐Mo mine, located 2 km east of the famous Berkeley Pit lake of Butte, Montana, contains two small lakes that vary in size depending on mining activity. In contrast to the acidic Berkeley Pit lake, the Continental Pit waters have near-neutral pH and relatively low metal concentrations. The main reason is geological: whereas the Berkeley Pit mined highly‐altered granite rich in pyrite with no neutralizing potential, the Continental Pit is mining weakly‐altered granite with lower pyrite concentrations and up to 1‐2% hydrothermal calcite. The purpose of this study was to gather and interpret information that bears on the chemistry of surface water and groundwater in the active Continental Pit. Pre‐existing chemistry data from sampling of the Continental Pit were compiled from the Montana Bureau of Mines and Geology and Montana Department of Environmental Quality records. In addition, in March of 2013, new water samples were collected from the mine’s main dewatering well, the Sarsfield well, and a nearby acidic seep (Pavilion Seep) and analyzed for trace metals and several stable isotopes, including dD and d18O of water, d13C of dissolved inorganic carbon, and d34S of dissolved sulfate. In December 2013, several soil samples were collected from the shore of the frozen pit lake and surrounding area. The soil samples were analyzed using X‐ray diffraction to determine mineral content. Based on Visual Minteq modeling, water in the Continental Pit lake is near equilibrium with a number of carbonate, sulfate, and molybdate minerals, including calcite, dolomite, rhodochrosite (MnCO3), brochantite (CuSO4·3Cu(OH)2), malachite (Cu2CO3(OH)2), hydrozincite (Zn5(CO3)2(OH)6), gypsum, and powellite (CaMoO4). The fact that these minerals are close to equilibrium suggests that they are present on the weathered mine walls and/or in the sediment of the surface water ponds. X‐Ray Diffraction (XRD) analysis of the pond “beach” sample failed to show any discrete metal‐bearing phases. One of the soil samples collected higher in the mine, near an area of active weathering of chalcocite‐rich ore, contained over 50% chalcanthite (CuSO4·5H2O). This water‐soluble copper salt is easily dissolved in water, and is probably a major source of copper to the pond and underlying groundwater system. However, concentrations of copper in the latter are probably controlled by other, less‐soluble minerals, such as brochantite or malachite. Although the acidity of the Pavilion Seep is high (~ 11 meq/L), the flow is much less than the Sarsfield Well at the current time. Thus, the pH, major and minor element chemistry in the Continental Pit lakes are buffered by calcite and other carbonate minerals. For the Continental Pit waters to become acidic, the influx of acidic seepage (e.g., Pavilion Seep) would need to increase substantially over its present volume.
Resumo:
New fluorinated hybrid solids [Mo2F2O5(tr2pr)] (1), [Co3(tr2pr)2(MoO4)2F2]·7H2O (2), and [Co3(H2O)2(tr2pr)3(Mo8O26F2)]·3H2O (3) (tr2pr = 1,3-bis(1,2,4-triazol-4-yl)propane) were prepared from the reaction systems consisting of Co(OAc)2/CoF2 and MoO3/(NH4)6Mo7O24, as CoII and MoVI sources, in water (2) or in aqueous HF (1, 3) employing mild hydrothermal conditions. The tr2pr ligand serves as a conformationally flexible tetradentate donor. In complex 1, the octahedrally coordinated Mo atoms are linked in the discrete corner-sharing {Mo2(μ2-O)F2O4N4} unit in which a pair of tr-heterocycles (tr = 1,2,4-triazole) is arranged in cis-positions opposite to “molybdenyl” oxygen atoms. The anti−anti conformation type of tr2pr facilitates the tight zigzag chain packing motif. The crystal structure of the mixed-anion complex salt 2 consists of trinuclear [Co3(μ3-MoO4)2(μ2-F)2] units self-assembling in CoII-undulating chains (Co···Co 3.0709(15) and 3.3596(7) Å), which are cross-linked by tr2pr in layers. In 3, containing condensed oxyfluoromolybdate species, linear centrosymmetric [Co3(μ2-tr)6]6+ SBUs are organized at distances of 10.72−12.45 Å in an α-Po-like network using bitopic tr-linkers. The octahedral {N6} and {N3O3} environments of the central and peripheral cobalt atoms, respectively, are filled by triazole N atoms, water molecules, and coordinating [Mo8O26F2]6− anions. Acting as a tetradentate O-donor, each difluorooctamolybdate anion anchors four [Co3(μ2-tr)6]6+ units through their peripheral Co-sites, which consequently leads to a novel type of a two-nodal 4,10-c net with the Schläfli symbol {32.43.5}{34.420.516.65}. The 2D and 3D coordination networks of 2 and 3, respectively, are characterized by significant overall antiferromagnetic exchange interactions (J/k) between the CoII spin centers on the order of −8 and −4 K. The [Mo8O26F2]6− anion is investigated in detail by quantum chemical calculations.