965 resultados para (PHTHALOCYANINATO)IRON(II)
Resumo:
The hydrothermal reactions of metavanadate and divalent iron salts in the presence of nitrogen-donor chelating ligands yield the complex [Fe(C10H8N2)(3)](2)[V4O12].10H(2)O, which consists of one centrosymmetric eight-membered ring [V4O12](4-) anion cluster, formed by four VO4 tetrahedra sharing vertices, two discrete octahedral [Fe(C10H8N2)(3)](2+) cations, formed by three 2,2'-bipyridyl ligands coordinated to Fe-II, and ten water molecules of solvation. The anion and coordination cations are isolated and form anion and cation layers, respectively. In the anion layers, these anions and water molecules of solvation are linked to each other, in a two-dimensional motif, through hydrogen-bonding interactions.
Resumo:
Fe(II) pyridinebisimine complexes activated with trialkylaluminium or modified methylaluminoxane (MMAO) as catalysts were employed for the polymerization of methyl methacrylate. Polymer yields, activities and polymer molecular weights as well as molecular weight distributions can be controlled over a wide range by the variation of the structures of the Fe(II) pyridinebisimine complexes and the reaction parameters such as Al/Fe molar ratio, monomer/catalyst molar ratio, monomer concentration, reaction temperature and time applied to the polymerization of methyl methacrylate. Under optimum condition, the catalytic activity of Fe(II) complex is of up to 74.5 kg(polym)/mol(Fe)h.
Resumo:
The first and second generation carbosilane dendrimers with silicon hydride terminated were synthesized, and then reacted with bis(imino)pyridyl containing allyl [4-CH2==CHCH2-2,6-(Pr2C6H3N)-Pr-i==CMe(C5H3N)MeC==N(2,6-'Pr2C6H3)], in the presence of H2PtCl6 as a hydrosilylation catalyst, to afford the first and second generation carbosilane supported ligands. Complexation reactions with FeCl(2)(.)4H(2)O give rise to iron-containing carbosilane dendrimers with FeCl2 moieties bound on the periphery. The metallodendrimers were used as catalyst precursors, activated with modified methylaluminoxane, for the polymerization of ethylene. In the case of low Al/Fe molar ratio, the metallodendrimers display much higher catalytic activity towards ethylene polymerization and produce much higher molecule weight polyethylenes than the corresponding single-nuclear complex under the same conditions.
Resumo:
A series of 2,6-bis(imino)pyridyl iron and cobalt complexes bearing p-substituent [2,6-(ArN=CMe)(2)C5H3N]-MCl2 (Ar=2,6-Me2C6H3, 2,4,6-Me3C6H2, 2,6-Me-2-4-BrC6H2, 2,6-Me-2-4-ClC6H2, 2,4-Me-2-6-BrC6H2, 2,4-Me-(2)-6-ClC6H2, while M=Fe, Co) have been synthesized and investigated as catalysts for ethylene polymerization in the presence of modified methylaluminoxane as a cocatalyst. The electron effect and positions of the substitueni of pyridinebisimine ligands were observed to affect considerably catalyst activity and polymer property.
Resumo:
A surface-renewable tris (1,10-phenanthroline-5, 6-dione) iron (II) hexafluorophosphate (FePD) modified carbon ceramic electrode was constructed by dispersing FePD and graphite powder in methyltrimethoxysilane (MTMOS) based gels. The FePD-modified electrode presented pH dependent voltammetric behavior, and its peak currents were diffusion-controlled in 0.1 mol/L Na2SO4 + H2SO4 solution (pH = 0. 4). In the, presence of iodate, clear electrocatalytic reduction waves were observed and thus the chemically modified electrode was used as an amperometric sensor for iodate in common salt. The linear range, sensitivity, detection limit and response time of the iodate sensor were 5 x 10(-6)-1 x 10(-2) mol/L, 7.448 muA.L/mmol, 1.2 x 10(-6) mol/L and 5 s, respectively. A distinct advantage of this sensor is its good reproducibility of surface-renewal by simple mechanical polishing.
Resumo:
Iron(II)-8-quinolino/MCM-41 is prepared. Its catalysis is studied in phenol hydroxylation using H2O2 (30%) as oxidant. The experiment shows that Iron(II)-8-quinolinol/MCM-41 has good catalytic activity and desired stability. Based on cyclic voltammetry, ESR, and UV-visible spectra studies of iron(II)-8-quinolinol complex in liquid phase, a radical substitution mechanism is proposed and used to demonstrate the experimental facts clearly. (C) 1997 Academic Press.
Resumo:
Phenol hydroxylation catalyzed by iron(II)-1,10-phenanthroline is investigated through kinetics, ESR, W-Vis as well as cyclic voltammogram studies. The optimum reaction conditions are obtained for diphenols production. Radical substitution mechanism is first proposed to explain the effects of pH, reaction medium and other factors on the phenol hydroxylation with H2O2 as oxidant, and found that the coexisting of iron(II)-1,10-phenanthroline and iron(III)-1,10-phenanthroline is the key for phenol hydroxylation to occur with H2O2 as oxygen donor.
Resumo:
MCM-41 zeolite and Tron (II)-Phen/MCM-41 zeolite have been prepared and characterized by XRD, IR, NH3-TPD, HET and UV-Vis. The Iron( II)-Phen/MCM-41 zeolite+30% H2O2 system is capable for catalyzing hydroxylation of phenol.
Resumo:
MCM-41 mesoporous molecular sieve and iron(II)-Phen/MCM-41 have been prepared and characterized by XRD, IR, NH3-TPD, BET and UV-Vis. The iron(II)-Phen/MCM-41 molecular sieve + 30% H2O2 system is capable of performing hydroxylation of phenol.
Resumo:
A dicyano-bis(1,10-phenanthroline)iron(II) modified elecrode was prepared. The voltammetric and the spectroelectrochemical behavior of this electrode were investigated. The influence of pH and the amount of Nafion and dicyano-bis(1,10-phenanthroline) iron(II) (DBPI) used in the electrode preparation on the electrochemical behavior is presented.
Resumo:
Dicyanobis(1,10-phenanthroline)iron(II)-modified glassy carbon electrodes were shown to exhibit an electrocatalytic response for the oxidation of acetaminophen with a decrease of 100 mV in the potential required. It can also inhibit the oxidation of ascor
Structural and kinetic studies of spin crossover in an Iron(II) complex with a novel tripodal ligand
Resumo:
Configurational and ligand conformational influences on the kinetics of (1)A(1) reversible arrow T-5(2) spin crossover in the Fe(II) complex with the novel tripodal ligand, 1,1,1-tris((N-(2-pyridylmethyl)-N-methylamino)methyl)ethane (tptMetame), have been explored. Despite having six chelate rings and three chiral nitrogen atoms, only one enantiomeric pair of isomers, Delta, SSS, and Lambda, RRR, of the complex ion is observed. The conformation of the three rings forming the upper ''cap'' of the complex structure can be assigned delta or lambda with respect to the 3-fold molecular axis. X-ray data at 300 and 153 K, above and below the critical temperature for the spin transition, show that the conformation of the ligand ''cap'' is the same as the absolute configuration of the complex, with the same Lambda lambda(CAP)(or Delta delta(CAP)) combination prevailing for both the LS ((1)A(1)) and HS (T-5(2)) isomers. Molecular mechanics calculations further show that the ligand energy remains lowest for this Lambda lambda(CAP) (or Delta delta(CAP)) combination at all Fe-N distances over the range spanning the LS and HS isomers. Measurements of the spin crossover relaxation time have been carried out in solution over the temperature range 293-170 K. The observed monophasic relaxation traces are also consistent with the absolute configuration of the complex remaining unaltered during the spin crossover.
Resumo:
Variable-temperature magnetic susceptibility measurements in the solid state of the bis complex of tris(1-pyrazolyl)-methane with Fe(II), [Fe(tpm)2](ClO4)2, suggest the existence of singlet-quintet spin crossover with the singlet isomer largely favored at room temperature. In acetonitrile solution, measurement of the absorption spectrum as a function of temperature reveals a spin equilibrium with the quintet population varying from ca. 6% at 233 K to ca. 30% at 295 K. When the complex in solution is irradiated with a laser pulse at wavelengths within the ligand field absorption band of the singlet isomer, ground-state depletion occurs within the pulse duration followed by fast recovery to the original absorbance level with a time constant of 25 +/- 5ns. The recovery time is virtually independent of temperature over the range +23 to -43-degrees-C, but the signal:noise ratio of the transient signals increases with decreasing temperature. The effect was observable at several monitoring wavelengths spanning the LF and MLCT absorption regions of the complex but only when the irradiation wavelength fell within the LF absorption region. Irradiation within the MLCT band produced no effect other than that of laser pulse scatter. The observations are interpreted in terms of photoperturbation of the singlet-quintet spin state equilibrium, which in this case occurs solely through excitation in the ligand field absorption region of the complex and is the first reported instance of this type for a spin-crossover complex in solution.