998 resultados para (900 1170) °C


Relevância:

80.00% 80.00%

Publicador:

Resumo:

CaSiO3:Eu3+ (1-5 mol%) red emitting phosphors have been synthesized by a low-temperature solution combustion method. The phosphors have been well characterized by powder X-ray diffraction (PXRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and optical spectroscopy. PXRD patterns reveal monoclinic CaSiO3 phase can be obtained at 900 degrees C. The SEM micrographs show the crystallites with irregular shape, mostly angular. Upon 254 nm excitation, the phosphor show characteristic fluorescence D-5(0) -> F-7(J) (J = 0, 1, 2, 3, 4) of the Eu3+ ions. The electronic transition located at 614 nm corresponding to D-5(0) -> F-7(2) of Eu3+ ions, which is stronger than the magnetic dipole transition located at 593 nm corresponding to D-5(0) -> F-7(1) of Eu3+ ions. Different pathways involved in emission process have been studied. Concentration quenching has been observed for Eu3+ concentration >4 mol%. UV-visible absorption shows an intense band at 240 nm in undoped and 270 nm in Eu3+ doped CaSiO3 which is attributed to oxygen to silicon (O-Si) ligand-to-metal charge-transfer (LMCT) band in the SiO32- group. The optical energy band gap is widened with increase of Eu3+ ion dopant. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

High-temperature reactions (Ca 900-degrees-C) involving albite, K-feldspar or plagioclase and K, Ba-or K, Sr chlorides were experimentally studied. These experiments reveal that the reaction between K-exchanged albite, potash feldspar, or plagioclase and Ba-chloride/Ba-K chloride results in the formation of celsian by the breakdown of the starting feldspar structure above 800-degrees-C. Sr-feldspar does not form under similar conditions. A size-effect of the large M-site cation appears to be responsible for the formation of celsian. The reaction between K-feldspar and barium chloride may be used as a method for synthesizing celsian.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The hot-working characteristics of IN-718 are studied in the temperature range 900 degrees C to 1200 degrees C and strain rate range 0.001 to 100 s(-1) using hot compression tests. Processing maps for hot working are developed on the basis of the strain-rate sensitivity variations with temperature and strain rate and interpreted using a dynamic materials model. The map exhibits two domains of dynamic recrystallization (DRX): one occurring at 950 degrees C and 0.001 s(-1) with an efficiency of power dissipation of 37 pct and the other at 1200 degrees C and 0.1 s(-1) with an efficiency of 40 pct. Dynamic recrystallization in the former domain is nucleated by the delta(Ni3Nb) precipitates and results in fine-grained microstructure. In the high-temperature DRX domain, carbides dissolve in the matrix and make interstitial carbon atoms available for increasing the rate of dislocation generation for DRX nucleation. It is recommended that IN-718 may be hot-forged initially at 1200 degrees C and 0.1 s(-1) and finish-forged at 950 degrees C and 0.001 s(-1) so that fine-grained structure may be achieved. The available forging practice validates these results from processing maps. At temperatures lower than 1000 degrees C and strain rates higher than 1 s(-1), the material exhibits adiabatic shear bands. Also, at temperatures higher than 1150 degrees C and strain rates more than 1 s(-1), IN-718 exhibits intercrystalline cracking. Both these regimes may be avoided in hot-working IN-718.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Amorphous carbon films are prepared by the pyrolysis of Tetra Chloro Phthalic Anhydride (TCPA) at different temperatures (700 degrees C to 900 degrees C). DC Conductivity measurements are done on the films in the temperature range 300K to 4.2K. It shows an activated temperature dependence with a small activation energy (0.02eV to 0.003eV). Variable range hopping is observed at low temperatures. The films are characterised by XRD, SEM, TEM, AFM and microRaman. The electronic structure of the film is used to explain the electrical behaviour.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The development of microstructure in 316L stainless steel during industrial hot forming operations including press forging (strain rate of 0 . 15 s(-1)), rolling/extrusion (strain rate of 2-8 . 8 s(-1)), and hammer forging (strain rate of 100 s(-1)) at different temperatures in the range 600-1200 degrees C was studied with a view to validating the predictions of the processing map. The results showed that good col relation existed between the regimes indicated in the map and the product microstructures. The 316L stainless steel exhibited unstable flow in the form of flow localisation when hammer forged at temperatures above 900 degrees C, rolled below 1000 degrees C, or press forged below 900 degrees C. All these conditions must therefore be avoided in mechanical processing of the material. Conversely, in order to obtain defect free microstructures, ideally the material should be rolled at temperatures above 1100 degrees C, press forged at temperatures above 1000 degrees C, or hammer forged in the temperature range 600-900 degrees C. (C) 1996 The Institute of Materials.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The removal of native oxide from Si (1 1 1) surfaces was investigated by X-ray photoelectron spectroscopy (XPS) and secondary ion mass spectra (SIMS) depth profiles. Two different oxide removal methods, performed under ultrahigh-vacuum (UHV) conditions, were carried out and compared. The first cleaning method is thermal desorption of oxide at 900 degrees C. The second method is the deposition of metallic gallium followed by redesorption. A significant decrease in oxygen was achieved by thermal desorption at 900 degrees C under UHV conditions. By applying a subsequent Ga deposition/redesorption, a further reduction in oxygen could be achieved. We examine the merits of an alternative oxide desorption method via conversion of the stable SiO(2) surface oxide into a volatile Ca(2)O oxide by a supply of Ga metals. Furthermore, ultra thin films of pure silicon nitride buffer layer were grown on a Si (1 1 1) surface by exposing the surface to radio-frequency (RF) nitrogen plasma followed by GaN growth. The SIMS depth profile shows that the oxygen impurity can be reduced at GaN/beta-Si(3)N(4)/Si interfaces by applying a subsequent Ga deposition/redesorption. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

CuFe2O4 nanograins have been prepared by the chemical co-precipitation technique and calcined in the temperature range of 200-1200 degrees C for 3 h. A wide range of grain sizes has been observed in this sintering temperature range, which has been determined to be 4 to 56 nm. Formation of ferrite has also been confirmed by FTIR measurement through the presence of wide band near 600 and 430 cm(-1) for the samples in the as-dried condition. Systematic variation of wave number has been observed with the variation of the calcination temperature. B-H loops exhibit transition from superparamagnetic to ferrimagnetic state above the calcination temperature of 900 degrees C. Coercivity of the samples at lower calcination temperature of 900 degrees C reduces significantly and tends towards zero coercivity, which is suggestive of superparamagnetic transition for the samples sintered below this temperature. Frequency spectrum of the real and imaginary part of complex initial permeability have been measured for the samples calcined at different temperature, which shows wide range of frequency stability. Curie temperature, T-c has been measured from temperature dependence initial permeability at a fixed frequency of 100 kHz. Although there is small variation of T-c with sintering temperature, the reduction of permeability with temperature drastically reduce for lower sintering temperature, which is in conformity with the change of B-H loops with the variation of sintering temperatures.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Nanocrystalline Nd2O3:Cu2+ (2 mol %) phosphors have been prepared by a low temperature solution combustion technique. Powder X-ray diffraction (PXRD) results confirm that hexagonal A-type Nd2O3 (900 degrees C, 3 h) and the lattice parameters have been evaluated by Rietveld refinement. Surface morphology of as-formed and Cu2+ doped Nd2O3 phosphors show that the particles are irregular in shape and porous in nature. TEM results also confirm the nature and size of the particles. The EPR spectrum exhibits two resonance signals with effective g values at g(parallel to) approximate to 2.12 and g(perpendicular to) approximate to 2.04. The g values indicate that the site symmetry of Cu2+ ions is octahedral symmetry with elongated tetragonal distortion. Raman studies show major peaks, which are assigned, to F-g and combination of A(g) + E-g modes. It is observed that the Raman peaks and intensity have been reduced in Cu2+ doped samples. UV-Visible absorption spectra exhibit a strong and broad absorption band at similar to 240 nm. Further, the absorption peak shifts to similar to 14 nm in Cu2+ doped samples. The optical band gap is estimated to be 5.28 eV for Cu doped Nd2O3 nanoparticles which are higher than the bulk Nd2O3 (4.7 eV). This can be attributed to the quantum confinement effect of the nanoparticles. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Sapphirine + quartz and orthopyroxene + sillimanite occur in garnet from an Mg-Al granulite from the Central Zone of the Limpopo Complex in South Africa. Textural evidence and a chemical gradient in garnet between the zones preserving the inclusions argue for the formation of sapphirine + quartz after orthopyroxene + sillimanite. Petrological observations, pressure-temperature phase diagrams, and compositional and model proportion results on isopleths indicate the sapphirine + quartz + garnet + orthopyroxene (high-Al) assemblage as the peak metamorphic assemblage (similar to 1050 degrees C at similar to 8.5 kbars), whereas orthopyroxene (low-Al) + sillimanite represents the prograde stage (at ca. 900 degrees C at similar to 8.5 kbars). Our report of these two diagnostic ultrahigh-temperature mineral assemblages in garnet from an Mg-Al granulite is unique, given the rare occurrence of sapphirine + quartz postdating orthopyroxene + sillimanite assemblage in granulites.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Eclogites and associated high-pressure (HP) rocks in collisional and accretionary orogenic belts preserve a record of subduction and exhumation, and provide a key constraint on the tectonic evolution of the continents. Most eclogites that formed at high pressures but low temperatures at > 10-11 kbar and 450-650 degrees C can be interpreted as a result of subduction of cold oceanic lithosphere. A new class of high-temperature (HT) eclogites that formed above 900 degrees C and at 14 to 30 kbar occurs in the deep continental crust, but their geodynamic significance and processes of formation are poorly understood. Here we show that Neoarchaean mafic-ultramafic complexes in the central granulite facies region of the Lewisian in NW Scotland contain HP/HT garnet-bearing granulites (retrogressed eclogites), gabbros, Iherzolites, and websterites, and that the HP granulites have garnets that contain inclusions of omphacite. From thermodynamic modeling and compositional isopleths we calculate that peak eclogite-facies metamorphism took place at 24-22 kbar and 1060-1040 degrees C. The geochemical signature of one (G-21) of the samples shows a strong depletion of Eu indicating magma fractionation at a crustal level. The Sm-Nd isochron ages of HP phases record different cooling ages of ca. 2480 and 2330 Ma. We suggest that the layered mafic-ultramafic complexes, which may have formed in an oceanic environment, were subducted to eclogite depths, and exhumed as HP garnet-bearing orogenic peridotites. The layered complexes were engulfed by widespread orthogneisses of tonalite-trondhjemite-granodiorite (TTG) composition with granulite facies assemblages. We propose two possible tectonic models: (1) the fact that the relicts of eclogitic complexes are so widespread in the Scourian can be taken as evidence that a >90 km x 40 km-size slab of continental crust containing mafic-ultramafic complexes was subducted to at least 70 km depth in the late Archaean. During exhumation the gneiss protoliths were retrogressed to granulite facies assemblages, but the mafic-ultramafic rocks resisted retrogression. (2) The layered complexes of mafic and ultramafic rocks were subducted to eclogite-facies depths and during exhumation under crustal conditions they were intruded by the orthogneiss protoliths (TTG) that were metamorphosed in the granulite facies. Apart from poorly defined UHP metamorphic rocks in Norway, the retrogressed eclogites in the central granulite/retrogressed eclogite facies Lewisian region, NW Scotland have the highest crustal pressures so far reported for Archaean rocks, and demonstrate that lithospheric subduction was transporting crustal rocks to HP depths in the Neoarchaean. (C) 2012 International Association for Gondwana Research. Published by Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Nanocrystalline delta-NbNx samples have been synthesized by reacting NbCl5 and urea at three different temperatures. A comparison of their structural, magnetic, transport and thermal properties is reported in the present study. The size of the particles and their agglomeration extent increase with increasing reaction temperature. The sample prepared at 900 degrees C showed the highest superconducting transition temperature (T-c) of 16.2 K with a transition width, similar to 1.8 K, as obtained from the resistivity measurement on cold-pressed bars. Above T-c, magnetization measurements revealed the presence of surface ferromagnetism which coexists with superconductivity below T-c. Heat capacity measurements confirm superconductivity with strong electron-phonon coupling constant. The sample prepared at 800 degrees C shows a lower T-c (10 K) while that prepared at 700 degrees C exhibit no superconductivity down to the lowest temperature (3 K) measured.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fine powders of beta-Ga2O3 nanostructures were prepared via low temperature reflux condensation method by varying the pH value without using any surfactant. The pH value of reaction mixture had great influence on the morphology of final products. High crystalline single phase beta-Ga2O3 nanostructures were obtained by thermal treatment at 900 degrees C which was confirmed by X-ray diffraction and Raman spectroscopy. The morphological analysis revealed rod like nanostructures at lower and higher pH values of 6 and 10, while spindle like structures were obtained at pH = 8. The phase purity and presence of vibrational bands were identified using Fourier transform infrared spectroscopy. The optical absorbance spectrum showed intense absorption features in the UV spectral region. A broad blue emission peak centered at 441 nm due to donor-acceptor gallium-oxygen vacancy pair recombination appeared. The photocatalytic activity toward Rhodamine B under visible light irradiation was higher for nanorods at pH 10.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Mn0.4Zn0.6Fe2O4 powders were prepared by microwave hydrothermal method. The powders were characterized by X-ray diffraction, transmission electron microscope. The powders were sintered at different temperatures 400, 500, 600, 700, 800 and 900 degrees C/30 min using microwave sintering method. The grain size was estimated by scanning electron microscope. The room temperature dielectric and magnetic properties were studied in the frequency range (100 kHz-1.8 GHz). The magnetization properties were measured upto 1.5 T. The acoustic emission has been measured along the hysteresis loops from 80 K to Curie temperature. It is found that the magneto-acoustic emission (MAE) activity along hysteresis loop is proportional to the hysteresis losses during the same loop. This law has been verified on series of polycrystalline ferrites and found that the law is valid whatever the composition, the grain size and temperature. It is also found that the domain wall creation/or annihilation processes are the origin of the MAE. (C) 2013 Published by Elsevier Ltd.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A porous layered composite of Li2MnO3 and LiMn1/3Co1/3Ni1/3O2 (composition: Li1.2Mn0.53Ni0.13Co0.13O2) is prepared by reverse microemulsion method employing a soft polymer template and studied as a positive electrode material. The precursor is heated at several temperatures between 500 and 900 degrees C. The product samples possess mesoporosity with broadly distributed pores of about 30 nm diameters. There is a decrease in pore volume as well as in surface area by increasing the temperature of preparation. Nevertheless, the electrochemical activity of the composite increases with an increase in temperature. The discharge capacity values of the samples prepared at 800 and 900 degrees C are about 250 mAh g(-1) at a specific current of 40 mA g(-1) with an excellent cycling stability. A value of 225 mAh g(-1) is obtained at the end of 30 charge-discharge cycles. Both these composite samples possess high rate capability, but the 800 degrees C sample is marginally superior to the 900 degrees C sample. A discharge capacity of 100 mAh g(-1) is obtained at a specific current of 1000 mA g(-1). The high rate capability is attributed to porous nature of the composite samples. (C) 2013 The Electrochemical Society. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Y3Fe5O12 (YIG) nanopowders were synthesised at different pH using co-precipitation method. The effect of pH on the phase formation of YIG is characterised using XRD, TEM, FTIR and TG/DTA. From the Scherer formula, the particle sizes of the powders were found to be 13, 19 and 28 nm for pH=10, 11 and 12 respectively. It is found that as the pH of the solution increase the particle size is also increases. It is also clear from the TG/DTA curves that as the pH is increasing the weight losses were found to be small. The nanopowders were sintered at 600, 700, 800 and 900 degrees C for 5 h using conventional sintering method. The phase formation is completed at 800 degrees C/5 h which is correlated with TG/DTA. The average grain size of the samples is found to be similar to 161 nm. The high values of M-s=23 emu g(-1) and H-c=22 Oe were recorded for the sample sintered at 900 degrees C.