24 resultados para "Readthrough"
Resumo:
Structure-function analysis of human Integrator subunit 4 Anupama Sataluri Advisor: Eric. J. Wagner, Ph.D. Uridine-rich small nuclear RNAs (U snRNA) are RNA Polymerase-II (RNAPII) transcripts that are ubiquitously expressed and are known to be essential for gene expression. snRNAs play a key role in mRNA splicing and in histone mRNA expression. Inaccurate snRNA biosynthesis can lead to diseases related to defective splicing and histone mRNA expression. Although the 3′ end formation mechanism and processing machinery of other RNAPII transcripts such as mRNA has been well studied, the mechanism of snRNA 3′ end processing has remained a mystery until the recent discovery of the machinery that mediates this process. In 2005, a complex of 14 subunits (the Integrator complex) associated with RNA Polymerase-II was discovered. The 14subunits were annotated Integrator 1-14 based on their size. The subunits of this complex together were found to facilitate 3′ end processing of snRNA. Identification of the Integrator complex propelled research in the direction of understanding the events of snRNA 3’end processing. Recent studies from our lab confirmed that Integrator subunit (IntS) 9 and 11 together perform the endonucleolytic cleavage of the nascent snRNA 3′ end to generate mature snRNA. However, the role of other members of the Integrator complex remains elusive. Current research in our lab is focused on deciphering the role of each subunit within the Integrator complex This work specifically focuses on elucidating the role of human Integrator subunit 4 (IntS4) and understanding how it facilitates the overall function of the complex. IntS4 has structural similarity with a protein called “Symplekin”, which is part of the mRNA 3’end processing machinery. Symplekin has been thoroughly researched in recent years and structure-function correlation studies in the context of mRNA 3’end processing have reported a scaffold function for Symplekin due to the presence of HEAT repeat motifs in its N-terminus. Based upon the structural similarity between IntS4 and Symplekin, we hypothesized that Integrator subunit 4 may be behaving as a Symplekin-like scaffold molecule that facilitates the interaction between other members of the Integrator Complex. To answer this question, the two important goals of this study were to: 1) identify the region of IntS4, which is important for snRNA 3′ end processing and 2) determine binding partners of IntS4 which promote its function as a scaffold. IntS4 structurally consists of a highly conserved N-terminus with 8 HEAT repeats, followed by a nonconserved C- terminus. A series of siRNA resistant N and C-terminus deletion constructs as well as specific point mutants within its N-terminal HEAT repeats were generated for human IntS4 and, utilizing a snRNA transcriptional readthrough GFP-reporter assay, we tested their ability to rescue misprocessing. This assay revealed a possible scaffold like property of IntS4. To probe IntS4 for interaction partners, we performed co-immunoprecipitation on nuclear extracts of IntS4 expressing stable cell lines and identified IntS3 and IntS5 among other Integrator subunits to be binding partners which facilitate the scaffold like function of hIntS4. These findings have established a critical role for IntS4 in snRNA 3′ end processing, identified that both its N and C termini are essential for its function, and mapped putative interaction domains with other Integrator subunits.
Resumo:
Nrd1 is an essential yeast protein of unknown function that has an RNA recognition motif (RRM) in its carboxyl half and a putative RNA polymerase II-binding domain, the CTD-binding motif, at its amino terminus. Nrd1 mediates a severe reduction in pre-mRNA production from a reporter gene bearing an exogenous sequence element in its intron. The effect of the inserted element is highly sequence-specific and is accompanied by the appearance of 3′-truncated transcripts. We have proposed that Nrd1 binds to the exogenous sequence element in the nascent pre-mRNA during transcription, aided by the CTD-binding motif, and directs 3′-end formation a short distance downstream. Here we show that highly purified Nrd1 carboxyl half binds tightly to the RNA element in vitro with sequence specificity that correlates with the efficiency of cis-element-directed down-regulation in vivo. A large deletion in the CTD-binding motif blocks down-regulation but does not affect the essential function of Nrd1. Furthermore, a nonsense mutant allele that produces truncated Nrd1 protein lacking the RRM has a dominant-negative effect on down-regulation but not on cell growth. Viability of this and several other nonsense alleles of Nrd1 appears to require translational readthrough, which in one case is extremely efficient. Thus the CTD-binding motif of Nrd1 is important for pre-mRNA down-regulation but is not required for the essential function of Nrd1. In contrast, the RNA-binding activity of Nrd1 appears to be required both for down-regulation and for its essential function.
Resumo:
Escherichia coli selenophosphate synthetase (SPS, the selD gene product) catalyzes the production of monoselenophosphate, the selenium donor compound required for synthesis of selenocysteine (Sec) and seleno-tRNAs. We report the molecular cloning of human and mouse homologs of the selD gene, designated Sps2, which contains an in-frame TGA codon at a site corresponding to the enzyme’s putative active site. These sequences allow the identification of selD gene homologs in the genomes of the bacterium Haemophilus influenzae and the archaeon Methanococcus jannaschii, which had been previously misinterpreted due to their in-frame TGA codon. Sps2 mRNA levels are elevated in organs previously implicated in the synthesis of selenoproteins and in active sites of blood cell development. In addition, we show that Sps2 mRNA is up-regulated upon activation of T lymphocytes and have mapped the Sps2 gene to mouse chromosome 7. Using the mouse gene isolated from the hematopoietic cell line FDCPmixA4, we devised a construct for protein expression that results in the insertion of a FLAG tag sequence at the N terminus of the SPS2 protein. This strategy allowed us to document the readthrough of the in-frame TGA codon and the incorporation of 75Se into SPS2. These results suggest the existence of an autoregulatory mechanism involving the incorporation of Sec into SPS2 that might be relevant to blood cell biology. This mechanism is likely to have been present in ancient life forms and conserved in a variety of living organisms from all domains of life.
Resumo:
We have reported previously the isolation and genetic characterization of mutations in the gene encoding the largest subunit of yeast RNA polymerase II (RNAPII), which lead to 6-azauracil (6AU)-sensitive growth. It was suggested that these mutations affect the functional interaction between RNAPII and transcription-elongation factor TFIIS because the 6AU-sensitive phenotype of the mutant strains was similar to that of a strain defective in the production of TFIIS and can be suppressed by increasing the dosage of the yeast TFIIS-encoding gene, PPR2, RNAPIIs were purified and characterized from two independent 6AU-sensitive yeast mutants and from wild-type (wt) cells. In vitro, in the absence of TFIIS, the purified wt polymerase and the two mutant polymerases showed similar specific activity in polymerization, readthrough at intrinsic transcriptional arrest sites and nascent RNA cleavage. In contrast to the wt polymerase, both mutant polymerases were not stimulated by the addition of a 3-fold molar excess of TFIIS in assays of promoter-independent transcription, readthrough or cleavage. However, stimulation of the ability of the mutant RNAPIIs to cleave nascent RNA and to read through intrinsic arrest sites was observed at TFIIS:RNAPII molar ratios greater than 600:1. Consistent with these findings, the binding affinity of the mutant polymerases for TFIIS was found to be reduced by more than 50-fold compared with that of the wt enzyme. These studies demonstrate that TFIIS has an important role in the regulation of transcription by yeast RNAPII and identify a possible binding site for TFIIS on RNAPII.
Resumo:
The prevailing view of the nuclear genetic code is that it is largely frozen and unambiguous. Flexibility in the nuclear genetic code has been demonstrated in ciliates that reassign standard stop codons to amino acids, resulting in seven variant genetic codes, including three previously undescribed ones reported here. Surprisingly, in two of these species, we find efficient translation of all 64 codons as standard amino acids and recognition of either one or all three stop codons. How, therefore, does the translation machinery interpret a “stop” codon? We provide evidence, based on ribosomal profiling and “stop” codon depletion shortly before coding sequence ends, that mRNA 3′ ends may contribute to distinguishing stop from sense in a context-dependent manner. We further propose that such context-dependent termination/readthrough suppression near transcript ends enables genetic code evolution.
Resumo:
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Positive-sense RNA viruses are important animal, plant, insect and bacteria pathogens and constitute the largest group of RNA viruses. Due to the relatively small size of their genomes, these viruses have evolved a variety of non-canonical translation mechanisms to optimize coding capacity expanding their proteome diversity. One such strategy is codon redefinition or recoding. First described in viruses, recoding is a programmed translation event in which codon alterations are context dependent. Recoding takes place in a subset of messenger RNA (mRNAs) with some products reflecting new, and some reflecting standard, meanings. The ratio between the two is both critical and highly regulated. While a variety of recoding mechanisms have been documented, (ribosome shunting, stop-carry on, termination-reinitiation, and translational bypassing), the two most extensively employed by RNA viruses are Programmed Ribosomal Frameshifting (PRF) and Programmed Ribosomal Readthrough (PRT). While both PRT and PRF subvert normal decoding for expression of C-terminal extension products, the former involves an alteration of reading frame, and the latter requires decoding of a non-sense codon. Both processes occur at a low but defined frequency, and both require Recoding Stimulatory Elements (RSE) for regulation and optimum functionality. These stimulatory signals can be embedded in the RNA in the form of sequence or secondary structure, or trans-acting factors outside the mRNA such as proteins or micro RNAs (miRNA). Despite 40+ years of study, the precise mechanisms by which viral RSE mediate ribosome recoding for the synthesis of their proteins, or how the ratio of these products is maintained, is poorly defined. This study reveals that in addition to a long distance RNA:RNA interaction, three alternate conformations and a phylogenetically conserved pseudoknot regulate PRT in the carmovirus Turnip crinkle virus (TCV).
Resumo:
Three Enterococcus faecium strains isolated successively from the same patient, vancomycin-resistant strain BM4659, vancomycin-dependent strain BM4660, and vancomycin-revertant strain BM4661, were indistinguishable by pulsed-field gel electrophoresis and harbored plasmid pIP846, which confers VanB-type resistance. The vancomycin dependence of strain BM4660 was due to mutation P(175)L, which suppressed the activity of the host Ddl D-Ala:D-Ala ligase. Reversion to resistance in strain BM4661 was due to a G-to-C transversion in the transcription terminator of the vanRS(B) operon that lowered the free energy of pairing from -13.08 to -6.65 kcal/mol, leading to low-level constitutive expression of the resistance genes from the P(RB) promoter, as indicated by analysis of peptidoglycan precursors and of VanX(B) D,D-dipeptidase activity. Transcription of the resistance genes, studied by Northern hybridization and reverse transcription, initiated from the P(YB) resistance promoter, was inducible in strains BM4659 and BM4660, whereas it started from the P(RB) regulatory promoter in strain BM4661, where it was superinducible. Strain BM4661 provides the first example of reversion to vancomycin resistance of a VanB-type dependent strain not due to a compensatory mutation in the ddl or vanS(B) gene. Instead, a mutation in the transcription terminator of the regulatory genes resulted in transcriptional readthrough of the resistance genes from the P(RB) promoter in the absence of vancomycin.