987 resultados para "Mno"-cao-mgo-sio2-al2o3
Resumo:
A structurally based viscosity model for fully liquid silicate slags has been proposed and applied to the Al2O3-CaO-'FeO'-SiO2 system at metallic iron saturation. The model links the slag viscosity to the internal structure of melts through the concentrations of various anion/cation structural units (SUs). The concentrations of structural units are equivalent to the second nearest neighbor bond concentrations calculated by the quasi-chemical thermodynamic model. This viscosity model describes experimental data over the entire temperature and composition range within the Al2O3-CaO-'FeO'-SiO2 system at metallic iron saturation and can be extended to other industrial slag systems.
Resumo:
Liquidus temperatures and phase equilibria have been determined in the olivine primary phase field of the MgO-FeO-SiO2-Al2O3 system. Liquidus isotherms have been determined in the temperature range from 1748 to 1873K. The results are presented in the form of pseudo-ternary sections of the MgO-FeO-SiO2 with 2 and 3wt% Al2O3 in the liquid. The study enables the liquidus to be described for a range of SiO2/MgO ratios. It was found that liquidus temperatures in the olivine primary phase field decrease with the addition of Al2O3.
Resumo:
Phase relations in the pseudoternary system CaO-CoO-SiO2 have been established at 1323 K. Three quaternary oxides were found to be stable: CaCoSi2O6 with clinopyroxene (Cpx), Ca2CoSi2O7 with melilite (Mel), and CaCoSiO4 with olivine (Ol) structures. The Gibbs energies of formation of the quaternary oxides from their component binary oxides were measured using solid-state galvanic cells incorporating yttria-stabilized zirconia as the solid electrolyte in the temperature range of 1000-1324 K. The results can be summarized as follows: CoO (rs) + CaO (rs) + 2SiO(2) (Qtz) --> CaCoSi2O6 (Cpx), Delta G(f)(0) = -117920 + 11.26T (+/-150) J/mol CoO (rs) + 2CaO (rs) + 2SiO(2) (Qtz) --> Ca2CoSi2O7 (Mel), Delta G(f)(0) = -192690 + 2.38T (+/-130) J/mol CoO (rs) + CaO (rs) + SiO2 (Qtz) --> CaCoSiO2 (Ol), Delta G(f)(0) = -100325 + 2.55T (+/-100) J/mol where rs = rock salt (NaCl) structure and Qtz = quartz. The uncertainty limits correspond to twice the standard error estimate. The experimentally observed miscibility gaps along the joins CaO-CoO and CaCoSiO4-Co2SiO4 were used to calculate the excess free energies of mixing for the solid solutions CaxCo1-xO and (CayCo1-y)CoSiO4:Delta G(E) = X(1 - X)[31975X + 26736 (1 - X)] J/mol and Delta G(E) = 23100 (+/-250) Y(1 - Y) J/mol. A T-X phase diagram for the binary CaO-CoO was computed from the thermodynamic information; the diagram agrees with information available in the literature. The computed miscibility gap along the CaCoSiO4-Co2SiO4 join is associated with a critical temperature of 1389 (+/-15) K. Stability fields for the various solid solutions and the quaternary compounds are depicted on chemical-potential diagrams for SiO2, CaO, and CoO at 1323 K.
Resumo:
The isothermal section of the phase diagram for the system NiO-MgO-SiO2 at 1373 K is established, The tie lines between (NiXMg1-X)O solid solution with rock salt structure and orthosilicate solid solution (NiYMg1-Y)Si0.5O2 and between orthosilicate and metasilicate (NiZMg1-Z)SiO3 crystalline solutions are determined using electron probe microanalysis (EPMA) and lattice parameter measurement on equilibrated samples, Although the monoxides and orthosilicates of Ni and Mg form a continuous range of solid solutions, the metasilicate phase exists only for 0 < Z < 0.096, The activity of NiO in the rock salt solid solution is determined as a function of composition and temperature in the range of 1023 to 1377 K using a solid state galvanic cell, The Gibbs energy of mixing of the monoxide solid solution can be expressed by a pseudo-subregular solution model: Delta G(ex) = X(1 - X)[(-2430 + 0.925T)X + (-5390 + 1.758T)(1 - X)] J/mol, The thermodynamic data for the rock salt phase are combined with information on interphase partitioning of Ni and Mg to generate the mixing properties for the orthosilicate and the metasilicate solid solutions, The regular solution model describes the orthosilicate and the metasilicate solid solutions at 1373 K within experimental uncertainties, The regular solution parameter Delta G(ex)/Y(1 - Y) is -820 (+/-70) J/mol for the orthosilicate solid solution, The corresponding value for the metasilicate solid solution is -220 (+/-150) J/mol, The derived activities for the orthosilicate solid solution are discussed in relation to the intracrystalline ion exchange equilibrium between M1 and M2 sites. The tie line information, in conjunction with the activity data for orthosilicate and metasilicate solid solutions, is used to calculate the Gibbs energy changes for the intercrystalline ion exchange reactions, Combining this with the known data for NiSi0.5O2, Gibbs energies of formation of MgSi0.5O2, MgSiO3, and metastable NiSiO3 are calculated, The Gibbs energy of formation of NiSiO3, from its component oxides, is equal to 7.67 (+/-0.6) kJ/mol at 1373 K.
Resumo:
The tie lines between (CoXMg1−X)O solid solution with rock salt structure and orthosilicate solid solution (CoYMg1−Y)-Si0.5O2, and between orthosilicate and metasilicate (CoZMg1-Z)SiO3 crystalline solutions, have been determined experimentally at 1373 K. The compositions of coexisting phases have been determined by electron probe microanalysis (EPMA) and lattice parameter measurement on equilibrated samples. The metasilicate solid solution exists only for 0 > Z > 0.213. The activity of CoO in the rock salt solid solution was determined as a function of composition and temperature in the range of 1023 to 1373 K using a solid-state galvanic cell: Pt, (CoXMg1−X)O+Co|(Y2O3)ZrO2|Co+CoO, Pt The free energy of mixing of (CoXMg1−X)O crystalline solution can be expressed by the equation ΔGE=X(1 −X)[(6048 − 2.146T)X+ (8745 − 3.09T)(1 −X)] J·mol−1 The thermodynamic data for the rock salt phase is combined with information on interphase partitioning of Co and Mg to generate the mixing properties for the ortho- and metasilicate solid solutions. For the orthosilicate solution (CoYMg1 −Y)Si0.5O2 at 1373 K, the excess Gibbs free energy of mixing is given by the relation ΔGE=Y(1 −Y)[2805Y+ 3261(1 −Y)] J·mol−1 For the metasilicate solution (CoZMg1 −Z)SiO3 at the same temperature, the excess free energy can be expressed by the relation ΔGE=Z(1 −Z)[2570Z+ 3627(1 −Z)] J·mol−1
Resumo:
Sub-solidus phase relations in the ternary systems CaO-RuO2-SiO2 and CaO-RuO2-V2O5 have been refined using thermodynamic data on calcium ruthenates, silicates and vanadates. Tie lines are established by considering Gibbs energy change for exchange reactions. Quaternary oxides have not been detected in these systems. Because of the relatively large entropy associated with phase transition of Ca2SiO4 from olivine to alpha' structure at 1120 K, reversal of one tie line is seen in the system CaO-RuO2-SiO2 between 950 and 1230 K. There is no change in sub-solidus phase relation as a function of temperature in the system CaO-RuO2-V2O5. Since vanadium can exist in several lower oxidation states, the computed sub-solidus phase relations are valid only at high oxygen partial pressures. There is fair agreement between the computed phase diagram and the limited experimental information available for CaO-deficient compositions in the literature. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
中国科学院山西煤炭化学研究所
Resumo:
应用岩石薄片鉴定、X射线粉晶衍射、X射线荧光光谱和ICP-MS等分析方法,研究了热带季风型气候条件下老挝Attapeu省Antoun地区二叠纪花岗闪长岩上发育的砖红土型风化壳矿物组成、常量元素和稀土元素地球化学特征。结果表明,风化产物呈酸性,风化壳表土上形成薄层硅质壳层,表土中石英含量最高、铁氧化物含量低和高岭石含量低,符合典型的灰化土特征。随着风化作用加强,Fe2O3、TiO2和Al2O3出现富集,K2O、Na2O、CaO和MgO出现淋失。石英出现富集原因可能是雨季降水冲刷和酸性水淋溶掉高岭石等黏土矿物,而旱季SiO2含量上升至地表富集形成硅质薄壳缘故。剖面稀土元素分布型式为轻稀土富集型,∑REE在风化壳中部达到最高值318mg kg^-1,剖面上Ce和Eu均呈正异常-负异常-正异常变化趋势,∑REE最高值出现在Ce和Eu负异常和(Fe^2+/Fe^3+)较高层位,∑REE与Fe2O3显著正相关。REE富集与铁铝氧化物和黏土矿物吸附有关,也与相对还原的酸性环境有关.
Resumo:
中国南方古生代广泛分布富有机质的黑色页岩,分布层位较多(如下寒武统牛蹄塘组底部的黑色页岩、奥陶系五峰组页岩、志留系龙马溪组黑色页岩、泥盆系深水台间盆地的黑色碳质、硅质页岩,以及二叠系的黑色页岩、硅质岩等),并伴有Mo、Ni、PGE、V、Au、Ag等贵重金属元素富集层,尤其是湘黔地区下寒武统牛蹄塘组底部的黑色页岩,作为瞬时灾变沉积物,可与全球大洋缺氧事件对比。贵州省遵义地区黄家湾和湖南张家界地区柑子坪剖面为该地区较典型的剖面,前人已进行了大量的岩石地层、生物地层、元素地球化学研究工作,但沉积学方面尚缺乏系统性与较深入研究,特别是关于以黄家湾剖面为代表的浅水沉积体系与柑子坪剖面为代表的深水相黑色页岩沉积体系之间的时空关系缺乏统一的认识,且有机地球化学研究涉及甚少。因此,本文从沉积学和地球化学两方面,特别是有机地球化学方面,探讨了湘黔地区下寒武统底部牛蹄塘组黑色岩系的成因以及相应的灾变事件-大洋缺氧事件,取得如下认识: (1)本文对研究区下寒武统地层进行了较全面的清理,重新厘定了研究区下寒武统地层系统。下寒武统自下而上划分为牛蹄塘组、明心寺组、金顶山组和清虚洞组,其时代经历了梅树村阶、筇竹寺阶、沧浪铺阶和龙王庙阶,与西伯利亚地区同期沉积相比,分别对应晚Tommotian、Atdabanian、Botonian和Toyonian期。 (2)确定了研究区下寒武统岩石类型有碳酸盐岩、泥质岩和碎屑岩三大类。下寒武统下、中部泥质岩、粉砂岩及砂岩发育,且以泥质岩为主,少有碳酸盐岩发育,而上部清虚洞组灰岩(白云岩)发育。下寒武统牛蹄塘组黑色岩系主要由黑色页岩、石煤、硅质页岩、硅岩、粉砂岩、磷块岩、重晶石岩等组成,主要矿物组合为石英、伊利石和黄铁矿以及少量重晶石、磷灰石和方解石。从生物地层、岩石地层、年代地层来看,牛蹄塘组底部黑色页岩与南亚、西亚、欧洲、北美等地Tommotian期广泛分布的黑色页岩有很好的可对比性。 (3)基于对地层清理、古生物以及岩石学特征的详细研究,研究区下寒武统可划分为碎屑岩海相和碳酸盐岩海相两个沉积体系组。碎屑岩海相又分为滨岸、内陆棚、外陆棚、斜坡亚相;碳酸盐岩海相主要为开阔台地亚相。从时空上看,地层由老到新,粒度逐渐变粗,水体逐渐变浅,从外陆棚-斜坡、内陆棚到滨海,最后为开阔台地相;从西向东,由浅水相区的滨岸到内陆棚,最后到深水相区的外陆棚到斜坡。 (4)晚震旦世灯影组灰白色粉晶白云岩样品的SiO2含量比较低,MgO、CaO、CO2含量较高。牛蹄塘组黑色碳质泥岩、碳质页岩以SiO2含量为主,其次为Al2O3和Fe2O3。微量元素含量具有如下特征:地层由老到新,从灯影组白云岩→牛蹄塘组磷块岩/硅质岩→多金属富集层,呈现出增加趋势,此后至黑色页岩又有回落。特征微量元素(如Mo、Ni、V、U等)及其比值(如V/(V+Ni)、V/Cr、Ni/Co、U/Th、δU等)显示这套富含有机质黑色页岩为热水沉积,其沉积环境为含氧量逐渐减少的贫氧-缺氧的还原环境。 (5)稀土元素总量(∑REE)从6.67ppm变化到481ppm,平均含量为123ppm,轻稀土相对比较富集。经PAAS标准化的稀土配分模式曲线具有近于水平或略显右倾特征。灯影组Ce异常值均小于-0.10,代表当时海水处于氧化阶段。而牛蹄塘组底部和上部Ce异常值大于-0.10,接近0,代表弱的缺氧沉积环境。对于牛蹄塘组中部,其值小于-0.10,说明缺氧环境持续了一段时间后,海洋出现了一个短暂的充氧期。根据Ce异常和参考海平面,研究区晚震旦世-早寒武世可识别出3个主要海平面升降旋回。而Eu异常为0.002-1.16,大多数样品显示负Eu异常,表明其沉积环境为缺氧的还原环境。 (6)所有样品均含丰富的正构烷烃、类异戊二烯烃、萜类化合物以及甾类化合物,尤其是具有重要价值的甲基三环萜烷系列、25-降藿烷系列以及甲基甾烷。在GC谱图上,正构烷烃显示明显的单峰型分布特征,碳数分布范围为nC14-nC31,主峰碳为nC18、nC19或nC20,无明显的奇偶碳数优势分布。类异戊二烯烃、萜类化合物以及甾类化合物等的特点也表明,早寒武世黑色岩系不同层位中有机质的先质均来源于菌藻类生物,有机质类型属于腐泥型,沉积环境为强还原到弱还原环境。有机质成熟度指标显示了研究区有机质热演化程度高,一般已经达到生油门限或高成熟阶段,其中以黑色页岩的演变程度最高,但仍未达到演变的最终阶段。 (7)在地层剖面上,有机碳含量为0.05-12.31%,平均为4.97%;有机碳同位素组成(δ13Corg)从-29.49--34.41‰(PDB),发生负偏移,偏移量达到4.3‰,而δ13Ccarb值从晚震旦世的-4.6‰下降至早寒武世的-10.6‰,具有6.0‰的负偏移,δ18Ocarb值在-13.7--2.3‰(PDB)之间。δ13Corg与δ13Ccarb变化具有一致性,表明其偏移与有机质组分无关。在Tommotian晚期,海平面持续上升,海洋循环引起海洋的含氧量减少,可能是引起δ13C负偏移的一个原因。另外,加上海洋条件急剧恶化,底层水缺氧更严重。因此可确定研究区Tommotian期缺氧事件的存在。 上述研究表明,湘黔地区早寒武世黑色岩系的形成和Tommotian期缺氧事件的发生既与区域背景有关,又与有机质遭受细菌降解、生物爆发致使生物生产率的提高有关,还与海平面升降有关。扬子地台在晚震旦世-早寒武世处于全球海平面上升阶段,底层洋流活跃,大量营养物质被上升流周期性地带到表层水中使生物大量繁殖,生物生产率增加,底层水含氧量减少。在这种背景下,氧化作用缓慢,海进期间歇性的上升洋流把富有机质的缺氧水带到相对深水区,导致黑色页岩广泛分布。由于表层浮游生物大量死亡,腐烂分解吸收大量溶解氧,再加上上升洋流也分解有机质,因此底层水迅速变成“无氧状态”,导致沉积物中海洋生物死亡,有机质突然急增而大量保存下来,加强了缺氧环境。