924 resultados para zootecnic parameters
Resumo:
The standard procedure of groundwater resource estimation in India till date is based on the specific yield parameters of each rock type (lithology) derived through pumping test analysis. Using the change in groundwater level, specific yield, and area of influence, groundwater storage change could be estimated. However, terrain conditions in the form of geomorphological variations have an important bearing on the net groundwater recharge. In this study, an attempt was made to use both lithology and geomorphology as input variables to estimate the recharge from different sources in each lithology unit influenced by the geomorphic conditions (lith-geom), season wise separately. The study provided a methodological approach for an evaluation of groundwater in a semi-arid hard rock terrain in Tirunelveli, Tamil Nadu, India. While characterizing the gneissic rock, it was found that the geomorphologic variations in the gneissic rock due to weathering and deposition behaved differently with respect to aquifer recharge. The three different geomorphic units identified in gneissic rock (pediplain shallow weathered (PPS), pediplain moderate weathered (PPM), and buried pediplain moderate (BPM)) showed a significant variation in recharge conditions among themselves. It was found from the study that Peninsular gneiss gives a net recharge value of 0.13 m/year/unit area when considered as a single unit w.r.t. lithology, whereas the same area considered with lith-geom classes gives recharge values between 0.1 and 0.41 m/year presenting a different assessment. It is also found from this study that the stage of development (SOD) for each lith-geom unit in Peninsular gneiss varies from 168 to 230 %, whereas the SOD is 223 % for the lithology as a single unit.
Resumo:
The multi-layers feedforward neural network is used for inversion of material constants of fluid-saturated porous media. The direct analysis of fluid-saturated porous media is carried out with the boundary element method. The dynamic displacement responses obtained from direct analysis for prescribed material parameters constitute the sample sets training neural network. By virtue of the effective L-M training algorithm and the Tikhonov regularization method as well as the GCV method for an appropriate selection of regularization parameter, the inverse mapping from dynamic displacement responses to material constants is performed. Numerical examples demonstrate the validity of the neural network method.
Resumo:
Supersonic cluster beam deposition has been used to produce films with different nanostructures by controlling the deposition parameters such as the film thickness, substrate temperature and cluster mass distribution. The field emission properties of cluster-assembled carbon films have been characterized and correlated to the evolution of the film nanostructure. Threshold fields ranging between 4 and 10 V/mum and saturation current densities as high as 0.7 mA have been measured for samples heated during deposition. A series of voltage ramps, i.e., a conditioning process, was found to initiate more stable and reproducible emission. It was found that the presence of graphitic particles (onions, nanotube embryos) in the films substantially enhances the field emission performance. Films patterned on a micrometer scale have been conditioned spot by spot by a ball-tip anode, showing that a relatively high emission site density can be achieved from the cluster-assembled material. (C) 2002 American Institute of Physics.
Sensitivity Analysis of Dimensionless Parameters for Physical Simulation of Water-Flooding Reservoir
Resumo:
A numerical approach to optimize dimensionless parameters of water-flooding porous media flows is proposed based on the analysis of the sensitivity factor defined as the variation ration of a target function with respect to the variation of dimensionless parameters. A complete set of scaling criteria for water-flooding reservoir of five-spot well pattern case is derived from the 3-D governing equations, involving the gravitational force, the capillary force and the compressibility of water, oil and rock. By using this approach, we have estimated the influences of each dimensionless parameter on experimental results and thus sorted out the dominant ones with larger sensitivity factors ranging from10-4to10-0 .
Resumo:
Casimir effect on the critical pull-in gap and pull-in voltage of nanoelectromechanical switches is studied. An approximate analytical expression of the critical pull-in gap with Casimir force is presented by the perturbation theory. The corresponding pull-in parameters are computed numerically, from which one can notice the nonlinear effect of Casimir force on the pull-in parameters. The detachment length has been presented, which increases with increasing thickness of the beam.
Resumo:
We studied the dependence of thermodynamic variables in a sonoluminescing ~SL! bubble on various physical factors, which include viscosity, thermal conductivity, surface tension, the equation of state of the gas inside the bubble, as well as the compressibility of the surrounding liquid. The numerical solutions show that the existence of shock waves in the SL parameter regime is very sensitive to these factors. Furthermore, we show that even without shock waves, the reflection of continuous compressional waves at the bubble center can produce the high temperature and picosecond time scale light pulse of the SL bubble, which implies that SL may not necessarily be due to shock waves.
Resumo:
Peel test measurements and simulations of the interfacial mechanical parameters for the Al/Epoxy/Al2O3 system are performed in the present investigation. A series of Al film thicknesses between 20 and 250 microns and three peel angles of 90, 135 and 180 degrees are considered. Two types of epoxy adhesives are adopted to obtain both strong and weak interface adhesions. A finite element model with cohesive zone elements is used to identify the interfacial parameters and simulate the peel test process. By simulating and recording normal stress near the crack tip, the separation strength is obtained. Furthermore, the cohesive energy is identified by comparing the simulated steady-state peel force and the experimental result. It is found from the research that both the cohesive energy and the separation strength can be taken as the intrinsic interfacial parameters which are dependent on the thickness of the adhesive layer and independent of the film thickness and peel angle.
Resumo:
A set of scaling criteria of a polymer flooding reservoir is derived from the governing equations, which involve gravity and capillary force, compressibility of water, oil, and rock, non-Newtonian behavior of the polymer solution, absorption, dispersion, and diffusion, etc. A numerical approach to quantify the dominance degree of each dimensionless parameter is proposed. With this approach, the sensitivity factor of each dimensionless parameter is evaluated. The results show that in polymer flooding, the order of the sensitivity factor ranges from 10(-5) to 10(0) and the dominant dimensionless parameters are generally the ratio of the oil permeability under the condition of the irreducible water saturation to water permeability under the condition of residual oil saturation, density, and viscosity ratios between water and oil, the reduced initial oleic phase saturation and the shear rate exponent of the polymer solution. It is also revealed that the dominant dimensionless parameters may be different from case to case. The effect of some physical variables, such as oil viscosity, injection rate, and permeability, on the dominance degree of the dimensionless parameters is analyzed and the dominant ones are determined for different cases.
Resumo:
Fibrillar structures are common features on the feet of many animals, such as geckos, spiders and flies. Theoretical analyses often use periodical array to simulate the assembly, and each fibril is assumed to be of equal load sharing (ELS). On the other hand, studies on a single fibril show that the adhesive interface is flaw insensitive when the size of the fibril is not larger than a critical one. In this paper, the Dugdale Barenblatt model has been used to study the conditions of ELS and how to enhance adhesion by tuning the geometrical parameters in fibrillar structures. Different configurations in an array of fibres are considered, such as line array, square and hexagonal patterns. It is found that in order to satisfy flaw-insensitivity and ELS conditions, the number of fibrils and the pull-off force of the fibrillar interface depend significantly on the fibre separation, the interface interacting energy, the effective range of cohesive interaction and the radius of fibrils. Proper tuning of the geometrical parameters will enhance the pull-off force of the fibrillar structures. This study may suggest possible methods to design strong adhesion devices for engineering applications.
Resumo:
This paper considers a class of dynamic Spatial Point Processes (PP) that evolves over time in a Markovian fashion. This Markov in time PP is hidden and observed indirectly through another PP via thinning, displacement and noise. This statistical model is important for Multi object Tracking applications and we present an approximate likelihood based method for estimating the model parameters. The work is supported by an extensive numerical study.