654 resultados para zirconia


Relevância:

10.00% 10.00%

Publicador:

Resumo:

An expression for the EMF of a nonisothermal galvanic cell, with gradients in both temperature and chemical potential across a solid electrolyte, is derived based on the phenomenological equations of irreversible thermodynamics. The EMF of the nonisothermal cell can be written as a sum of the contributions from the chemical potential gradient and the EMF of a thermocell operating in the same temperature gradient but at unit activity of the neutral form of the migrating species. The validity of the derived equation is confirmed experimentally by imposing nonlinear gradients of temperature and chemical potential across galvanic cells constructed using fully stabilized zirconia as the electrolyte. The nature of the gradient has no effect on the EMF.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The thermodynamic activity of sodium oxide (Na2O) in the Nasicon solid solution series, Na1+xZr2SixO12, has been measured in the temperature range 700–1100 K using solid state galvanic cells: Pt|CO2 + O2|Na2CO3?Na1+xZr2SixP3-xO12?(Y2O3)ZrO2?In + In2O3|Ta, Pt for 1 = ? = 2.5, and Pt?CO2 + O2?Na2CO3?ß-alumina?Na1+xZr2SixP3-xO12?Ar + O2?Pt for x = 0, 0.5, 2.5, and 3. The former cell, where the Nasicon solid solution is used as an electrolyte along with yttria-stabilized zirconia, is well suited for Nasicon compositions with high ionic conductivity. In the latter cell, ß-alumina is used as an electrolyte and the Nasicon solid solution forms an electrode. The chemical potential of Na2O is found to increase monotonically with x at constant temperature. The partial entropy of Na2O decreases continuously with x. However, the partial enthalpy exhibits a maximum at x = 2. This suggests that the binding energy is minimum at the composition where ionic conductivity and cell volume have maximum values.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We combine first-principles calculations with EXAFS studies to investigate the origin of high oxygen storage capacity in ceria-zirconia solid solution, prepared by solution combustion method. We find that nanocrystalline Ce0.5Zr0.5O2 can be reduced to Ce0.5Zr0.5O1.57 by H-2 upto 850 degrees C with an OSC of 65 cc/gm which is extremely high. Calculated local atomic-scale structure reveals the presence of long and short bonds resulting in four-fold coordination of the cations, confirmed by the EXAFS studies. Bond valence analysis of the microscopic structure and energetics is used to evaluate the strength of binding of different oxide ions and vacancies. We find the presence of strongly and weakly bound oxygens, of which the latter are responsible for the higher oxygen storage capacity in the mixed oxides than in the pure CeO2.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The thermodynamic activity of sodium oxide (Na2O) in the Nasicon solid solution series, Na1+xZr2SixO12, has been measured in the temperature range 700�1100 K using solid state galvanic cells: Pt|CO2 + O2|Na2CO3?Na1+xZr2SixP3-xO12?(Y2O3)ZrO2?In + In2O3|Ta, Pt for 1 = ? = 2.5, and Pt?CO2 + O2?Na2CO3?ß-alumina?Na1+xZr2SixP3-xO12?Ar + O2?Pt for x = 0, 0.5, 2.5, and 3. The former cell, where the Nasicon solid solution is used as an electrolyte along with yttria-stabilized zirconia, is well suited for Nasicon compositions with high ionic conductivity. In the latter cell, ß-alumina is used as an electrolyte and the Nasicon solid solution forms an electrode. The chemical potential of Na2O is found to increase monotonically with x at constant temperature. The partial entropy of Na2O decreases continuously with x. However, the partial enthalpy exhibits a maximum at x = 2. This suggests that the binding energy is minimum at the composition where ionic conductivity and cell volume have maximum values.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A solid-state electrochemical cell, with yttria-stabilized zirconia as the electrolyte and pure O-2 gas at 0.1 MPa as the reference electrode, has been used to measure the oxygen chemical potential corresponding to the equilibrium between beta-Rh2O3 and RhO2 in the temperature range from 850 to 1050K. Using standard Gibbs energy of formation of beta-Rh2O3 available in the literature and the measured oxygen potential, the standard Gibbs free energy of formation of RhO2 is derived as a function of temperature: Delta G(f)degrees(RhO2)(+/- 71)/J mol(-1) = 238,418 + 179.89T Using an estimated value of Delta C-p degrees; for the formation reaction of RhO2 from its elements, the standard enthalpy of formation, standard entropy and isobaric heat capacity of RhO2 at 298.15 K are evaluated: Delta H-f degrees (298.15 K)(+/- 164)/kJ mol(-1) = -244.94, S degrees (298.15 K)(+/- 3.00)/J mol(-1) K-1 = 45.11 and C-p degrees(298.15 K)(+/- 2.6)1mol(-1) K-1 =64.28. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Laser sintering was carried out using a high power continuous-wave CO2 laser to prepare pellets of zirconia (ZrO2), hafnia (HfO2) and yttria (Y2O3) mixed oxides as starting materials in the deposition of optical coatings. Hardened recrystallized pellets appeared to have been formed during laser treatment. X-ray diffraction analysis revealed a monoclinic-to-tetragonal phase transformation in the binary system while the ternary system was found to have a mixture of two crystalline phases. Cross-sectional scanning electron microscopy showed two isothermal crystalline regions in the ternary system. The optical inhomogeneity was low in the films deposited from the laser-fused pellets, but the absorption at a wavelength of 351 nm increased with increasing HfO2 content. The films deposited from laser-fused pellets were analysed by electron spectroscopy for chemical analysis and found to be stoichiometric and homogeneous.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Zr doping in ceria (CeO2) results in enhanced static dielectric response compared to pure ceria. On the other hand, Ti doping in ceria keeps its dielectric constant unchanged. We use first-principles density functional theory calculations based on pseudopotentials and a plane wave basis to determine electronic properties and dielectric response of Zr/Ti-doped and oxygen-vacancy-introduced ceria. Softening of phonon modes is responsible for the enhancement in dielectric response of Zr-doped ceria compared to that of pure ceria. The ceria-zirconia mixed oxides should have potential use as high-k materials in the semiconductor industry. (c) 2010 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Gibbs free energy of formation of the orthorhombic form of CaZrO3(o) from monoclinic ZrO2(m) and periclase CaO(p) has been determined as a function of temperature in the range 950-1225 K, using an electrochemical cell incorporating single-crystal CaF2 as the solid electrolyte. The results are corrected for the small solid solubility of CaO in ZrO2. For the reaction, ZrO2(m) + CaO(p) --> CaZrO3(o), DELTAG(phi) = -31590 -13.9T(+/- 180) J mol-1. The ''second-law'' enthalpy of formation of CaZrO3 obtained from the results of this study at a mean temperature of 1090 K is in excellent agreement with the high-temperature solution calorimetric measurements of Muromachi and Navrotsky at 1068 K (J. Solid State Chem., 72 (1988) 244), and the average value of the bomb and acid solution calorimetric studies of Lvova and Feodosev (Zh. Fiz. Khim., 38 (1964) 28), Korneev et al. (Izv. Akad. Nauk SSSR, Neorg. Mater., 7 (1971) 886) and Brown and Bennington (Thermochim. Acta, 106 (1986) 183). The standard entropy of CaZrO3(o) at 298.15 K from the free energy data is 96.4 (+/- 3.5) J K-1 mol-1. The results of this study are discussed in comparison with high-temperture e.m.f. measurements reported in the literature on cubic zirconia solid solutions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Phase relations in the system Mn-Rh-O are established at 1273 K by equilibrating different compositions either in evacuated quartz ampules or in pure oxygen at a pressure of 1.01 x 10(5) Pa. The quenched samples are examined by optical microscopy, X-ray diffraction, and energy-dispersive X-ray analysis (EDAX). The alloys and intermetallics in the binary Mn-Rh system are found to be in equilibrium with MnO. There is only one ternary compound, MnRh2O4, with normal spinel structure in the system. The compound Mn3O4 has a tetragonal structure at 1273 K. A solid solution is formed between MnRh2O4 and Mn3O4. The solid solution has the cubic structure over a large range of composition and coexists with metallic rhodium. The partial pressure of oxygen corresponding to this two-phase equilibrium is measured as a function of the composition of the spinel solid solution and temperature. A new solid-state cell, with three separate electrode compartments, is designed to measure accurately the chemical potential of oxygen in the two-phase mixture, Rh + Mn3-2xRh2xO4, which has 1 degree of freedom at constant temperature. From the electromotive force (emf), thermodynamic mixing properties of the Mn3O4-MnRh2O4 solid solution and Gibbs energy of formation of MnRh2O4 are deduced. The activities exhibit negative deviations from Raoult's law for most of the composition range, except near Mn3O4, where a two-phase region exists. In the cubic phase, the entropy of mixing of the two Rh3+ and Mn3+ ions on the octahedral site of the spinel is ideal, and the enthalpy of mixing is positive and symmetric with respect to composition. For the formation of the spinel (sp) from component oxides with rock salt (rs) and orthorhombic (orth) structures according to the reaction, MnO (rs) + Rh2O3 (orth) --> MnRh2O4 (sp), DELTAG-degrees = -49,680 + 1.56T (+/-500) J mol-1. The oxygen potentials corresponding to MnO + Mn3O4 and Rh + Rh2O3 equilibria are also obtained from potentiometric measurements on galvanic cells incorporating yttria-stabilized zirconia as the solid electrolyte. From these results, an oxygen potential diagram for the ternary system is developed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Zirconia-based solid electrolytes with zircon (ZrSiO4) as the auxiliary electrode have been suggested of sensing silicon concentrations in iron and steel melts. A knowledge of phase relations in the ternary system MO-SiO2-ZrO2 (M = Ca, Mg) is useful for selecting an appropriate auxiliary electrode. In this investigation, an isothermal section for the phase diagram of the system CaO-SiO2ZrO2 at 1573 K has been established by equilibrating mixtures of component oxides in air, followed by quenching and phase identification by optical miroscopy, energy disperse analysis of X-rays (EDAX) and X-ray diffraction analysis (XRD). The equilibrium phase relations have also been confirmed by computation using the available thermodynamic data on condensed phases in the system. The results indicate that zircon is not in thermodynamic equilibrium with calcia-stabilized zirconia or calcium zirconate. The silica containing phase in equilibrium with stabilized zirconia is Ca3ZrSi2O9. Calcium zirconate can coexist with Ca3ZrSi2O9 and Ca2SiO4.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Plasma-sprayable powders of calcia, magnesia and yttria-stabilized zirconia have been prepared by using polyvinyl alcohol binders. The powders have been characterized for sprayability by spray coating on steer plates previously coated with an NiAl bond coat. The suitability of these coatings for thermal barrier applications have been examined. Thermal barrier and related properties, along with phase stability and mechanical properties, have been found to be good. Failure of the thermal barrier coating has been observed to occur at the interface between the bond coat and the substrate, due to the formation of a pile-up layer consisting of Fe-Zr-Al-O compound.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Phase relations in the pseudoternary system CaO-CoO-SiO2 have been established at 1323 K. Three quaternary oxides were found to be stable: CaCoSi2O6 with clinopyroxene (Cpx), Ca2CoSi2O7 with melilite (Mel), and CaCoSiO4 with olivine (Ol) structures. The Gibbs energies of formation of the quaternary oxides from their component binary oxides were measured using solid-state galvanic cells incorporating yttria-stabilized zirconia as the solid electrolyte in the temperature range of 1000-1324 K. The results can be summarized as follows: CoO (rs) + CaO (rs) + 2SiO(2) (Qtz) --> CaCoSi2O6 (Cpx), Delta G(f)(0) = -117920 + 11.26T (+/-150) J/mol CoO (rs) + 2CaO (rs) + 2SiO(2) (Qtz) --> Ca2CoSi2O7 (Mel), Delta G(f)(0) = -192690 + 2.38T (+/-130) J/mol CoO (rs) + CaO (rs) + SiO2 (Qtz) --> CaCoSiO2 (Ol), Delta G(f)(0) = -100325 + 2.55T (+/-100) J/mol where rs = rock salt (NaCl) structure and Qtz = quartz. The uncertainty limits correspond to twice the standard error estimate. The experimentally observed miscibility gaps along the joins CaO-CoO and CaCoSiO4-Co2SiO4 were used to calculate the excess free energies of mixing for the solid solutions CaxCo1-xO and (CayCo1-y)CoSiO4:Delta G(E) = X(1 - X)[31975X + 26736 (1 - X)] J/mol and Delta G(E) = 23100 (+/-250) Y(1 - Y) J/mol. A T-X phase diagram for the binary CaO-CoO was computed from the thermodynamic information; the diagram agrees with information available in the literature. The computed miscibility gap along the CaCoSiO4-Co2SiO4 join is associated with a critical temperature of 1389 (+/-15) K. Stability fields for the various solid solutions and the quaternary compounds are depicted on chemical-potential diagrams for SiO2, CaO, and CoO at 1323 K.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sliding wear characteristics and mechanisms of structural ceramics, namely Al2O3, zirconia-toughened alumina, tetragonal zirconia polycrystals (TZP) and Si3N4 against a steel counterface are influenced by mechanical and tribochemical interactions, specific to the combinations studied. The present paper studies the role of the disc in the sliding wear process of the above ceramics. Experiments were conducted at a pressure of 15.5 MPa between 0.1 and 12.0 m s(-1) with ceramic pins sliding against an EN-24 steel disc. Except in the case of TZP, the disc morphology is sensitive to variations in speed rather than to the pin material. The disc track is (i) mildly abraded at low speeds (about 0.1-0.75 m s(-1)), (ii) severely abraded at intermediate speeds (about 1.0-3.0 m s(-1)), (iii) covered with black patches at high speeds (about 4.0-6.0 m s(-1)) and (iv) completely black at very high speeds (about 7.0-12.0 m s(-1)). In the case of TZP, although black patches appear, transfer of TZP onto the disc surface and high wear of TZP occurs at 4.0 m s(-1). The order of the wear of the disc estimated from profilometric measurements is the same for all the ceramics. Except for Si3N4, the onset of wear of the ceramics is associated with the appearance of deep 'V' grooves on either side of the profile of the disc track. This can be explained on the basis of the thermal and hardness variations. Although other interaction products specific to the ceramic pin are present, the formation of iron oxides dominates the wear of the disc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Phase relations in the system La-Rh-O at 1223 Ii have been determined by examination of equilibrated samples by optical and scanning electron microscopy, powder X-ray diffraction (XRD), and energy-dispersive analysis of X-rays (EDAX). Only one ternary oxide, LaRhO3, with distorted orthorhombic perovskite structure (Pbnm, a = 0.5525, b = 0.5680, and c = 0.7901 nm) was identified. The alloys and intermetallics along the La-Rh binary are in equilibrium with La2O3. The thermodynamic properties of LaRhO3 were determined in the temperature range 890 to 1310 K, using a solid-state cell incorporating yttria-stabilized zirconia as the electrolyte. A new four-compartment design of the emf cell was used to enhance the accuracy of measurement. For the reaction 1/2La(2)O(3) + 1/2Rh(2)O(3) --> LaRhO3, Delta G degrees = - 70 780 + 4.89T (+/- 90) J.mol(-1) The compound decomposes on heating to a mixture of La2O3, Ph and O-2. The calculated decomposition temperatures are 1843 (+/- 5) K in pure O-2 and 1728 (+/- 5) K in air at a pressure of 1.01 x 10(5) Pa. The phase diagrams for the system La-Rh-O at different partial pressures of oxygen are calculated from the thermodynamic information.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The standard Gibbs energies of formation of lanthanum orthoferrite (LaFeO3-delta) and hexaferrite (LaFe12O19)were determined using solid-state electrochemical cells incorporating yttria-stabilized zirconia as the electrolyte and pure oxygen gas at ambient pressure as the reference electrode. From emf of the solid-state cell, the Gibbs energy of formation of nonstoichiometric orthoferrite (LaFeO3-delta) is obtained. To derive values for the stoichiometric phase, variation of the oxygen nonstoichiometric parameter with oxygen partial pressure was measured using thermogravimetry under controlled gas mixtures. The results obtained for LaFeO3 and LaFe12O19 can be summarized by the following equations, which represent the formation of ternary oxides from their component binary oxides: 1/2 La2O3 + 1/2 Fe2O3 -> LaFeO3: Delta G degrees (LaFeO3) (+/- 450) (J mol(-1)) = -62920 - 2.12T (K), and 1/2 La2O3 + 9/2Fe(2)O(3) + Fe3O4 -> LaFe12O19; Delta G degrees (LaFe12O19) (+/- 200) (J mol(-1)) = -103900 + 21.25T (K). These data are discussed critically in comparison with thermodynamic values reported in the literature from a variety of measurements. The values obtained in this study are consistent with calorimetric entropy and enthalpy of formation of the perovskite phase and with some of the Gibbs energy measurements reported in the literature. For the lanthanum hexaferrite (LaFe12O19) there are no prior thermodynamic measurements for comparison. (c) 2011 Elsevier B.V. All rights reserved.