993 resultados para word prediction
Resumo:
When immobilized enzyme kinetics are disguised by inter- and intraparticle diffusion effects, an approximate mathematical procedure is indicated whereby experimental data obtained in the limiting ranges of first- and zeroth-order Michaelis-Menten kinetics could be used for the prediction of the kinetic constants.
Resumo:
Four species of large mackerels (Scomberomorus spp.) co-occur in the waters off northern Australia and are important to fisheries in the region. State fisheries agencies monitor these species for fisheries assessment; however, data inaccuracies may exist due to difficulties with identification of these closely related species, particularly when specimens are incomplete from fish processing. This study examined the efficacy of using otolith morphometrics to differentiate and predict among the four mackerel species off northeastern Australia. Seven otolith measurements and five shape indices were recorded from 555 mackerel specimens. Multivariate modelling including linear discriminant analysis (LDA) and support vector machines, successfully differentiated among the four species based on otolith morphometrics. Cross validation determined a predictive accuracy of at least 96% for both models. An optimum predictive model for the four mackerel species was an LDA model that included fork length, feret length, feret width, perimeter, area, roundness, form factor and rectangularity as explanatory variables. This analysis may improve the accuracy of fisheries monitoring, the estimates based on this monitoring (i.e. mortality rate) and the overall management of mackerel species in Australia.
Resumo:
The thesis consists of five international congress papers and a summary with an introduction. The overarching aim of the studies and the summary is to examine the inner coherency of the theological and anthropological thinking of Gregory of Nyssa (331-395). To the issue is applied an "apophatic approach" with a "Christological focus". It is suggested that the coherency is to be found from the Christological concept of unity between "true God" and "true man" in the one person of Jesus Christ. Gregory is among the first to make a full recognition of two natures of Christ, and to use this recognition systematically in his writings. The aim of the studies is pursued by the method of "identification", a combination of the modern critical "problematic method" and Gregory's own aphairetic method of "following" (akolouthia). The preoccupation with issues relating to the so-called Hellenization of Christianity in the patristic era was strong in the twentieth-century Gregory scholarship. The most discussed questions have been the Greek influence in his thought and his philosophical sources. In the five articles of the thesis it is examined how Gregory's thinking stands in its own right. The manifestly apophatic character of his theological thinking is made a part of the method of examining his thought according to the principles of his own method of following. The basic issue concerning the relation of theology and anthropology is discussed in the contexts of his central Trinitarian, anhtropological, Christological and eschatological sources. In the summary the Christocentric integration of Gregory's thinking is discussed also in relation to the issue of the alledged Hellenization. The main conclusion of the thesis concerns the concept of theology in Gregory. It is not indebted to the classical concept of theology as metaphysics or human speculation of God. Instead, it is founded to the traditional Judeo-Christian idea of God who speaks with his people face to face. In Gregory, theologia connotes the oikonomia of God's self-revelation. It may be regarded as the state of constant expression of love between the Creator and his created image. In theology, the human person becomes an image of the Word by which the Father expresses his love to "man" whom he loves as his own Son. Eventually the whole humankind, as one, gives the divine Word a physical - audible and sensible - Body. Humankind then becomes what theology is. The whole humanity expresses divine love by manifesting Christ in words and deeds, singing in one voice to the glory of the Father, the Son and the Holy Spirit.
Resumo:
Further improvement in performance, to achieve near transparent quality LSF quantization, is shown to be possible by using a higher order two dimensional (2-D) prediction in the coefficient domain. The prediction is performed in a closed-loop manner so that the LSF reconstruction error is the same as the quantization error of the prediction residual. We show that an optimum 2-D predictor, exploiting both inter-frame and intra-frame correlations, performs better than existing predictive methods. Computationally efficient split vector quantization technique is used to implement the proposed 2-D prediction based method. We show further improvement in performance by using weighted Euclidean distance.
Resumo:
The past several years have seen significant advances in the development of computational methods for the prediction of the structure and interactions of coiled-coil peptides. These methods are generally based on pairwise correlations of amino acids, helical propensity, thermal melts and the energetics of sidechain interactions, as well as statistical patterns based on Hidden Markov Model (HMM) and Support Vector Machine (SVM) techniques. These methods are complemented by a number of public databases that contain sequences, motifs, domains and other details of coiled-coil structures identified by various algorithms. Some of these computational methods have been developed to make predictions of coiled-coil structure on the basis of sequence information; however, structural predictions of the oligomerisation state of these peptides still remains largely an open question due to the dynamic behaviour of these molecules. This review focuses on existing in silico methods for the prediction of coiled-coil peptides of functional importance using sequence and/or three-dimensional structural data.
Resumo:
Heparin is a glycosaminoglycan known to bind bone morphogenetic proteins (BMPs) and the growth and differentiation factors (GDFs) and has strong and variable effects on BMP osteogenic activity. In this paper we report our predictions of the likely heparin binding sites for BMP-2 and 14. The N-terminal sequences upstream of TGF-β-type cysteine-knot domains in BMP-2, 7 and 14 contain the basic residues arginine and lysine, which are key components of the heparin/HS-binding sites, with these residues being highly non-conserved. Importantly, evolutionary conserved surfaces on the beta sheets are required for interactions with receptors and antagonists. Furthermore, BMP-2 has electropositive surfaces on two sides compared to BMP-7 and BMP-14. Molecular docking simulations suggest the presence of high and low affinity binding sites in dimeric BMP-2. Histidines were found to play a role in the interactions of BMP-2 with heparin; however, a pKa analysis suggests that histidines are likely not protonated. This is indicative that interactions of BMP-2 with heparin do not require acidic pH. Taken together, non-conserved amino acid residues in the N-terminus and residues protruding from the beta sheet (not overlapping with the receptor binding sites and the dimeric interface) and not C-terminal are found to be important for heparin–BMP interactions.
Resumo:
A lack of information on protein-protein interactions at the host-pathogen interface is impeding the understanding of the pathogenesis process. A recently developed, homology search-based method to predict protein-protein interactions is applied to the gastric pathogen, Helicobacter pylori to predict the interactions between proteins of H. pylori and human proteins in vitro. Many of the predicted interactions could potentially occur between the pathogen and its human host during pathogenesis as we focused mainly on the H. pylori proteins that have a transmembrane region or are encoded in the pathogenic island and those which are known to be secreted into the human host. By applying the homology search approach to protein-protein interaction databases DIP and iPfam, we could predict in vitro interactions for a total of 623 H. pylori proteins with 6559 human proteins. The predicted interactions include 549 hypothetical proteins of as yet unknown function encoded in the H. pylori genome and 13 experimentally verified secreted proteins. We have recognized 833 interactions involving the extracellular domains of transmembrane proteins of H. pylori. Structural analysis of some of the examples reveals that the interaction predicted by us is consistent with the structural compatibility of binding partners. Examples of interactions with discernible biological relevance are discussed.
Resumo:
The rapid increase in genome sequence information has necessitated the annotation of their functional elements, particularly those occurring in the non-coding regions, in the genomic context. Promoter region is the key regulatory region, which enables the gene to be transcribed or repressed, but it is difficult to determine experimentally. Hence an in silico identification of promoters is crucial in order to guide experimental work and to pin point the key region that controls the transcription initiation of a gene. In this analysis, we demonstrate that while the promoter regions are in general less stable than the flanking regions, their average free energy varies depending on the GC composition of the flanking genomic sequence. We have therefore obtained a set of free energy threshold values, for genomic DNA with varying GC content and used them as generic criteria for predicting promoter regions in several microbial genomes, using an in-house developed tool `PromPredict'. On applying it to predict promoter regions corresponding to the 1144 and 612 experimentally validated TSSs in E. coli (50.8% GC) and B. subtilis (43.5% GC) sensitivity of 99% and 95% and precision values of 58% and 60%, respectively, were achieved. For the limited data set of 81 TSSs available for M. tuberculosis (65.6% GC) a sensitivity of 100% and precision of 49% was obtained.
Resumo:
Screening and early identification of primary immunodeficiency disease (PID) genes is a major challenge for physicians. Many resources have catalogued molecular alterations in known PID genes along with their associated clinical and immunological phenotypes. However, these resources do not assist in identifying candidate PID genes. We have recently developed a platform designated Resource of Asian PDIs, which hosts information pertaining to molecular alterations, protein-protein interaction networks, mouse studies and microarray gene expression profiling of all known PID genes. Using this resource as a discovery tool, we describe the development of an algorithm for prediction of candidate PID genes. Using a support vector machine learning approach, we have predicted 1442 candidate PID genes using 69 binary features of 148 known PID genes and 3162 non-PID genes as a training data set. The power of this approach is illustrated by the fact that six of the predicted genes have recently been experimentally confirmed to be PID genes. The remaining genes in this predicted data set represent attractive candidates for testing in patients where the etiology cannot be ascribed to any of the known PID genes.
Resumo:
This article discusses approaches to feminist art practice by early career Australian women artists in the context of 'Contemporary Australia: Women', an exhibition held at the Gallery of Modern Art (GOMA), Brisbane in 2012.
Resumo:
BACKGROUND Polygenic risk scores comprising established susceptibility variants have shown to be informative classifiers for several complex diseases including prostate cancer. For prostate cancer it is unknown if inclusion of genetic markers that have so far not been associated with prostate cancer risk at a genome-wide significant level will improve disease prediction. METHODS We built polygenic risk scores in a large training set comprising over 25,000 individuals. Initially 65 established prostate cancer susceptibility variants were selected. After LD pruning additional variants were prioritized based on their association with prostate cancer. Six-fold cross validation was performed to assess genetic risk scores and optimize the number of additional variants to be included. The final model was evaluated in an independent study population including 1,370 cases and 1,239 controls. RESULTS The polygenic risk score with 65 established susceptibility variants provided an area under the curve (AUC) of 0.67. Adding an additional 68 novel variants significantly increased the AUC to 0.68 (P = 0.0012) and the net reclassification index with 0.21 (P = 8.5E-08). All novel variants were located in genomic regions established as associated with prostate cancer risk. CONCLUSIONS Inclusion of additional genetic variants from established prostate cancer susceptibility regions improves disease prediction. Prostate 75:1467–1474, 2015. © 2015 Wiley Periodicals, Inc.