822 resultados para wireless LAN
Resumo:
The broadcast nature of the wireless medium jeopardizes secure transmissions. Cryptographic measures fail to ensure security when eavesdroppers have superior computational capability; however, it can be assured from information theoretic security approaches. We use physical layer security to guarantee non-zero secrecy rate in single source, single destination multi-hop networks with eavesdroppers for two cases: when eavesdropper locations and channel gains are known and when their positions are unknown. We propose a two-phase solution which consists of finding activation sets and then obtaining transmit powers subject to SINR constraints for the case when eavesdropper locations are known. We introduce methods to find activation sets and compare their performance. Necessary but reasonable approximations are made in power minimization formulations for tractability reasons. For scenarios with no eavesdropper location information, we suggest vulnerability region (the area having zero secrecy rate) minimization over the network. Our results show that in the absence of location information average number of eavesdroppers who have access to data is reduced.
Resumo:
We study the problem of optimal sequential (''as-you-go'') deployment of wireless relay nodes, as a person walks along a line of random length (with a known distribution). The objective is to create an impromptu multihop wireless network for connecting a packet source to be placed at the end of the line with a sink node located at the starting point, to operate in the light traffic regime. In walking from the sink towards the source, at every step, measurements yield the transmit powers required to establish links to one or more previously placed nodes. Based on these measurements, at every step, a decision is made to place a relay node, the overall system objective being to minimize a linear combination of the expected sum power (or the expected maximum power) required to deliver a packet from the source to the sink node and the expected number of relay nodes deployed. For each of these two objectives, two different relay selection strategies are considered: (i) each relay communicates with the sink via its immediate previous relay, (ii) the communication path can skip some of the deployed relays. With appropriate modeling assumptions, we formulate each of these problems as a Markov decision process (MDP). We provide the optimal policy structures for all these cases, and provide illustrations of the policies and their performance, via numerical results, for some typical parameters.
Resumo:
In this paper we consider a single discrete time queue with infinite buffer. The channel may experience fading. The transmission rate is a linear function of power used for transmission. In this scenario we explicitly obtain power control policies which minimize mean power and/or mean delay. There may also be peak power constraint.
Resumo:
The distributed, low-feedback, timer scheme is used in several wireless systems to select the best node from the available nodes. In it, each node sets a timer as a function of a local preference number called a metric, and transmits a packet when its timer expires. The scheme ensures that the timer of the best node, which has the highest metric, expires first. However, it fails to select the best node if another node transmits a packet within Delta s of the transmission by the best node. We derive the optimal metric-to-timer mappings for the practical scenario where the number of nodes is unknown. We consider two cases in which the probability distribution of the number of nodes is either known a priori or is unknown. In the first case, the optimal mapping maximizes the success probability averaged over the probability distribution. In the second case, a robust mapping maximizes the worst case average success probability over all possible probability distributions on the number of nodes. Results reveal that the proposed mappings deliver significant gains compared to the mappings considered in the literature.
Resumo:
Different medium access control (MAC) layer protocols, for example, IEEE 802.11 series and others are used in wireless local area networks. They have limitation in handling bulk data transfer applications, like video-on-demand, videoconference, etc. To avoid this problem a cooperative MAC protocol environment has been introduced, which enables the MAC protocol of a node to use its nearby nodes MAC protocol as and when required. We have found on various occasions that specified cooperative MAC establishes cooperative transmissions to send the specified data to the destination. In this paper we propose cooperative MAC priority (CoopMACPri) protocol which exploits the advantages of priority value given by the upper layers for selection of different paths to nodes running heterogeneous applications in a wireless ad hoc network environment. The CoopMACPri protocol improves the system throughput and minimizes energy consumption. Using a Markov chain model, we developed a model to analyse the performance of CoopMACPri protocol; and also derived closed-form expression of saturated system throughput and energy consumption. Performance evaluations validate the accuracy of the theoretical analysis, and also show that the performance of CoopMACPri protocol varies with the number of nodes. We observed that the simulation results and analysis reflects the effectiveness of the proposed protocol as per the specifications.
Resumo:
Our work is motivated by impromptu (or ``as-you-go'') deployment of wireless relay nodes along a path, a need that arises in many situations. In this paper, the path is modeled as starting at the origin (where there is the data sink, e.g., the control center), and evolving randomly over a lattice in the positive quadrant. A person walks along the path deploying relay nodes as he goes. At each step, the path can, randomly, either continue in the same direction or take a turn, or come to an end, at which point a data source (e.g., a sensor) has to be placed, that will send packets to the data sink. A decision has to be made at each step whether or not to place a wireless relay node. Assuming that the packet generation rate by the source is very low, and simple link-by-link scheduling, we consider the problem of sequential relay placement so as to minimize the expectation of an end-to-end cost metric (a linear combination of the sum of convex hop costs and the number of relays placed). This impromptu relay placement problem is formulated as a total cost Markov decision process. First, we derive the optimal policy in terms of an optimal placement set and show that this set is characterized by a boundary (with respect to the position of the last placed relay) beyond which it is optimal to place the next relay. Next, based on a simpler one-step-look-ahead characterization of the optimal policy, we propose an algorithm which is proved to converge to the optimal placement set in a finite number of steps and which is faster than value iteration. We show by simulations that the distance threshold based heuristic, usually assumed in the literature, is close to the optimal, provided that the threshold distance is carefully chosen. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
In this paper, we study a problem of designing a multi-hop wireless network for interconnecting sensors (hereafter called source nodes) to a Base Station (BS), by deploying a minimum number of relay nodes at a subset of given potential locations, while meeting a quality of service (QoS) objective specified as a hop count bound for paths from the sources to the BS. The hop count bound suffices to ensure a certain probability of the data being delivered to the BS within a given maximum delay under a light traffic model. We observe that the problem is NP-Hard. For this problem, we propose a polynomial time approximation algorithm based on iteratively constructing shortest path trees and heuristically pruning away the relay nodes used until the hop count bound is violated. Results show that the algorithm performs efficiently in various randomly generated network scenarios; in over 90% of the tested scenarios, it gave solutions that were either optimal or were worse than optimal by just one relay. We then use random graph techniques to obtain, under a certain stochastic setting, an upper bound on the average case approximation ratio of a class of algorithms (including the proposed algorithm) for this problem as a function of the number of source nodes, and the hop count bound. To the best of our knowledge, the average case analysis is the first of its kind in the relay placement literature. Since the design is based on a light traffic model, we also provide simulation results (using models for the IEEE 802.15.4 physical layer and medium access control) to assess the traffic levels up to which the QoS objectives continue to be met. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
A link level reliable multicast requires a channel access protocol to resolve the collision of feedback messages sent by multicast data receivers. Several deterministic media access control protocols have been proposed to attain high reliability, but with large delay. Besides, there are also protocols which can only give probabilistic guarantee about reliability, but have the least delay. In this paper, we propose a virtual token-based channel access and feedback protocol (VTCAF) for link level reliable multicasting. The VTCAF protocol introduces a virtual (implicit) token passing mechanism based on carrier sensing to avoid the collision between feedback messages. The delay performance is improved in VTCAF protocol by reducing the number of feedback messages. Besides, the VTCAF protocol is parametric in nature and can easily trade off reliability with the delay as per the requirement of the underlying application. Such a cross layer design approach would be useful for a variety of multicast applications which require reliable communication with different levels of reliability and delay performance. We have analyzed our protocol to evaluate various performance parameters at different packet loss rate and compared its performance with those of others. Our protocol has also been simulated using Castalia network simulator to evaluate the same performance parameters. Simulation and analytical results together show that the VTCAF protocol is able to considerably reduce average access delay while ensuring very high reliability at the same time.
Resumo:
In this paper, we consider an intrusion detection application for Wireless Sensor Networks. We study the problem of scheduling the sleep times of the individual sensors, where the objective is to maximize the network lifetime while keeping the tracking error to a minimum. We formulate this problem as a partially-observable Markov decision process (POMDP) with continuous stateaction spaces, in a manner similar to Fuemmeler and Veeravalli (IEEE Trans Signal Process 56(5), 2091-2101, 2008). However, unlike their formulation, we consider infinite horizon discounted and average cost objectives as performance criteria. For each criterion, we propose a convergent on-policy Q-learning algorithm that operates on two timescales, while employing function approximation. Feature-based representations and function approximation is necessary to handle the curse of dimensionality associated with the underlying POMDP. Our proposed algorithm incorporates a policy gradient update using a one-simulation simultaneous perturbation stochastic approximation estimate on the faster timescale, while the Q-value parameter (arising from a linear function approximation architecture for the Q-values) is updated in an on-policy temporal difference algorithm-like fashion on the slower timescale. The feature selection scheme employed in each of our algorithms manages the energy and tracking components in a manner that assists the search for the optimal sleep-scheduling policy. For the sake of comparison, in both discounted and average settings, we also develop a function approximation analogue of the Q-learning algorithm. This algorithm, unlike the two-timescale variant, does not possess theoretical convergence guarantees. Finally, we also adapt our algorithms to include a stochastic iterative estimation scheme for the intruder's mobility model and this is useful in settings where the latter is not known. Our simulation results on a synthetic 2-dimensional network setting suggest that our algorithms result in better tracking accuracy at the cost of only a few additional sensors, in comparison to a recent prior work.
Resumo:
In this paper, we propose an eigen framework for transmit beamforming for single-hop and dual-hop network models with single antenna receivers. In cases where number of receivers is not more than three, the proposed Eigen approach is vastly superior in terms of ease of implementation and computational complexity compared with the existing convex-relaxation-based approaches. The essential premise is that the precoding problems can be posed as equivalent optimization problems of searching for an optimal vector in the joint numerical range of Hermitian matrices. We show that the latter problem has two convex approximations: the first one is a semi-definite program that yields a lower bound on the solution, and the second one is a linear matrix inequality that yields an upper bound on the solution. We study the performance of the proposed and existing techniques using numerical simulations.
Resumo:
The problem of delay-constrained, energy-efficient broadcast in cooperative wireless networks is NP-complete. While centralised setting allows some heuristic solutions, designing heuristics in distributed implementation poses significant challenges. This is more so in wireless sensor networks (WSNs) where nodes are deployed randomly and topology changes dynamically due to node failure/join and environment conditions. This paper demonstrates that careful design of network infrastructure can achieve guaranteed delay bounds and energy-efficiency, and even meet quality of service requirements during broadcast. The paper makes three prime contributions. First, we present an optimal lower bound on energy consumption for broadcast that is tighter than what has been previously proposed. Next, iSteiner, a lightweight, distributed and deterministic algorithm for creation of network infrastructure is discussed. iPercolate is the algorithm that exploits this structure to cooperatively broadcast information with guaranteed delivery and delay bounds, while allowing real-time traffic to pass undisturbed.
Resumo:
In a system with energy harvesting (EH) nodes, the design focus shifts from minimizing energy consumption by infrequently transmitting less information to making the best use of available energy to efficiently deliver data while adhering to the fundamental energy neutrality constraint. We address the problem of maximizing the throughput of a system consisting of rate-adaptive EH nodes that transmit to a destination. Unlike related literature, we focus on the practically important discrete-rate adaptation model. First, for a single EH node, we propose a discrete-rate adaptation rule and prove its optimality for a general class of stationary and ergodic EH and fading processes. We then study a general system with multiple EH nodes in which one is opportunistically selected to transmit. We first derive a novel and throughput-optimal joint selection and rate adaptation rule (TOJSRA) when the nodes are subject to a weaker average power constraint. We then propose a novel rule for a multi-EH node system that is based on TOJSRA, and we prove its optimality for stationary and ergodic EH and fading processes. We also model the various energy overheads of the EH nodes and characterize their effect on the adaptation policy and the system throughput.
Resumo:
We consider optimal power allocation policies for a single server, multiuser system. The power is consumed in transmission of data only. The transmission channel may experience multipath fading. We obtain very efficient, low computational complexity algorithms which minimize power and ensure stability of the data queues. We also obtain policies when the users may have mean delay constraints. If the power required is a linear function of rate then we exploit linearity and obtain linear programs with low complexity.
Resumo:
We address the problem of passive eavesdroppers in multi-hop wireless networks using the technique of friendly jamming. The network is assumed to employ Decode and Forward (DF) relaying. Assuming the availability of perfect channel state information (CSI) of legitimate nodes and eavesdroppers, we consider a scheduling and power allocation (PA) problem for a multiple-source multiple-sink scenario so that eavesdroppers are jammed, and source-destination throughput targets are met while minimizing the overall transmitted power. We propose activation sets (AS-es) for scheduling, and formulate an optimization problem for PA. Several methods for finding AS-es are discussed and compared. We present an approximate linear program for the original nonlinear, non-convex PA optimization problem, and argue that under certain conditions, both the formulations produce identical results. In the absence of eavesdroppers' CSI, we utilize the notion of Vulnerability Region (VR), and formulate an optimization problem with the objective of minimizing the VR. Our results show that the proposed solution can achieve power-efficient operation while defeating eavesdroppers and achieving desired source-destination throughputs simultaneously. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
A wireless fuel quantity indication system (FQIS) has been developed using an RFID-enabled sensing platform. The system comprises a fully passive tag, modified reader protocol, capacitive fuel probe, and auxiliary antenna for additional energy harvesting. Results of fluid testing show sensitivity to changes in fluid height of less than 0.25in. An RF-DC harvesting circuit was developed, which delivers up to 5dBm of input power through a remote radio frequency (RF) source. Testing was conducted in a loaded reverberation chamber to emulate the fuel tank environment. Results demonstrate feasibility of the remote source to power the sensor with less than 1W of maximum transmit power and under 100ms dwell time (100mW average power) into the tank. This indicates adequate coverage for large transport aircraft at safe operating levels with a sample rate of up to 1 sample/s.