870 resultados para weighted Sobolev spaces
Resumo:
In this paper, we design a new dynamic packet scheduling scheme suitable for differentiated service (DiffServ) network. Designed dynamic benefit weighted scheduling (DBWS) uses a dynamic weighted computation scheme loosely based on weighted round robin (WRR) policy. It predicts the weight required by expedited forwarding (EF) service for the current time slot (t) based on two criteria; (i) previous weight allocated to it at time (t-1), and (ii) the average increase in the queue length of EF buffer. This prediction provides smooth bandwidth allocation to all the services by avoiding overbooking of resources for EF service and still providing guaranteed services for it. The performance is analyzed for various scenarios at high, medium and low traffic conditions. The results show that packet loss is minimized, end to end delay is minimized and jitter is reduced and therefore meet quality of service (QoS) requirement of a network.
Resumo:
We address the problem of phase retrieval from Fourier transform magnitude spectrum for continuous-time signals that lie in a shift-invariant space spanned by integer shifts of a generator kernel. The phase retrieval problem for such signals is formulated as one of reconstructing the combining coefficients in the shift-invariant basis expansion. We develop sufficient conditions on the coefficients and the bases to guarantee exact phase retrieval, by which we mean reconstruction up to a global phase factor. We present a new class of discrete-domain signals that are not necessarily minimum-phase, but allow for exact phase retrieval from their Fourier magnitude spectra. We also establish Hilbert transform relations between log-magnitude and phase spectra for this class of discrete signals. It turns out that the corresponding continuous-domain counterparts need not satisfy a Hilbert transform relation; notwithstanding, the continuous-domain signals can be reconstructed from their Fourier magnitude spectra. We validate the reconstruction guarantees through simulations for some important classes of signals such as bandlimited signals and piecewise-smooth signals. We also present an application of the proposed phase retrieval technique for artifact-free signal reconstruction in frequency-domain optical-coherence tomography (FDOCT).
Resumo:
We study moduli spaces M-X (r, c(1), c(2)) parametrizing slope semistable vector bundles of rank r and fixed Chern classes c(1), c(2) on a ruled surface whose base is a rational nodal curve. We showthat under certain conditions, these moduli spaces are irreducible, smooth and rational (when non-empty). We also prove that they are non-empty in some cases. We show that for a rational ruled surface defined over real numbers, the moduli space M-X (r, c(1), c(2)) is rational as a variety defined over R.
Resumo:
The bilateral filter is known to be quite effective in denoising images corrupted with small dosages of additive Gaussian noise. The denoising performance of the filter, however, is known to degrade quickly with the increase in noise level. Several adaptations of the filter have been proposed in the literature to address this shortcoming, but often at a substantial computational overhead. In this paper, we report a simple pre-processing step that can substantially improve the denoising performance of the bilateral filter, at almost no additional cost. The modified filter is designed to be robust at large noise levels, and often tends to perform poorly below a certain noise threshold. To get the best of the original and the modified filter, we propose to combine them in a weighted fashion, where the weights are chosen to minimize (a surrogate of) the oracle mean-squared-error (MSE). The optimally-weighted filter is thus guaranteed to perform better than either of the component filters in terms of the MSE, at all noise levels. We also provide a fast algorithm for the weighted filtering. Visual and quantitative denoising results on standard test images are reported which demonstrate that the improvement over the original filter is significant both visually and in terms of PSNR. Moreover, the denoising performance of the optimally-weighted bilateral filter is competitive with the computation-intensive non-local means filter.
Resumo:
In speech recognition systems language model (LMs) are often constructed by training and combining multiple n-gram models. They can be either used to represent different genres or tasks found in diverse text sources, or capture stochastic properties of different linguistic symbol sequences, for example, syllables and words. Unsupervised LM adaptation may also be used to further improve robustness to varying styles or tasks. When using these techniques, extensive software changes are often required. In this paper an alternative and more general approach based on weighted finite state transducers (WFSTs) is investigated for LM combination and adaptation. As it is entirely based on well-defined WFST operations, minimum change to decoding tools is needed. A wide range of LM combination configurations can be flexibly supported. An efficient on-the-fly WFST decoding algorithm is also proposed. Significant error rate gains of 7.3% relative were obtained on a state-of-the-art broadcast audio recognition task using a history dependently adapted multi-level LM modelling both syllable and word sequences. ©2010 IEEE.
Resumo:
In this paper, we study some degenerate parabolic equation with Cauchy-Dirichlet boundary conditions. This problem is considered in little Holder spaces. The optimal regularity of the solution v is obtained and is specified in terms of those of the second member when some conditions upon the Holder exponent with respect to the degeneracy are satisfied. The proofs mainly use the sum theory of linear operators with or without density of domains and the results of smoothness obtained in the study of some abstract linear differential equations of elliptic type.
Resumo:
In this paper we introduce a weighted complex networks model to investigate and recognize structures of patterns. The regular treating in pattern recognition models is to describe each pattern as a high-dimensional vector which however is insufficient to express the structural information. Thus, a number of methods are developed to extract the structural information, such as different feature extraction algorithms used in pre-processing steps, or the local receptive fields in convolutional networks. In our model, each pattern is attributed to a weighted complex network, whose topology represents the structure of that pattern. Based upon the training samples, we get several prototypal complex networks which could stand for the general structural characteristics of patterns in different categories. We use these prototypal networks to recognize the unknown patterns. It is an attempt to use complex networks in pattern recognition, and our result shows the potential for real-world pattern recognition. A spatial parameter is introduced to get the optimal recognition accuracy, and it remains constant insensitive to the amount of training samples. We have discussed the interesting properties of the prototypal networks. An approximate linear relation is found between the strength and color of vertexes, in which we could compare the structural difference between each category. We have visualized these prototypal networks to show that their topology indeed represents the common characteristics of patterns. We have also shown that the asymmetric strength distribution in these prototypal networks brings high robustness for recognition. Our study may cast a light on understanding the mechanism of the biologic neuronal systems in object recognition as well.
Resumo:
The Value Handbook is a practical guide, showing how public sector organisations can get the most from ther buildings and spaces in their area. It brings together essential evidence about the benefits of good design, and demonstrates how understanding the different types of value created by the built environment (exchange value, use value, image value,social value, environmental value, and cultural value)is the key to realising its full potential.
Resumo:
The divergence of properties from one location to another within a soil mass is termed spatial variability, which traditionally includes three parameters the mean, the standard deviation, and the scale of fluctuation, in order to stochastically describe a soil property. Among them, determining the scale of fluctuation in the evaluation of spatial variability of soil profiles is not easy due to soil condition complexity. A simplified procedure is presented in the paper to determine the scale of fluctuation combined recurrence averaging and weighted linear regression. The alternative approach utilizes widely usable spreadsheet to solve the problem more directly and efficiently.