915 resultados para wavefront rise
Resumo:
The Subtropical Front (STF) marking the northern boundary of the Southern Ocean has a steep gradient in sea surface temperature (SST) of approximately 4°C over 0.5° of latitude. Presently, in the region south of Tasmania, the STF lies nominally at 47°S in the summer and 45°S in the winter. We present here SST reconstructions in a latitudinal transect of cores across the South Tasman Rise, southeast of Australia, during the late Quaternary. SST reconstructions are based on two paleotemperature proxies, alkenones and faunal assemblages, which are used to assess past changes in SST in spring and summer. The north-south alignment in core locations allows reconstruction of movement of the STF over the last 100 ka. Surface water temperatures during the last glaciation in this region were ~4°C colder than today. Additional temperature changes greater in magnitude than 4°C seen in individual cores can be attributed to changes in the water mass overlying the core site caused by the movement of the front across that location. During the penultimate interglacial, SST was ~2°C warmer and the STF was largely positioned south of 47°S. Movement of the STF to the north occurred during cool climate periods such as the last marine isotope stages 3 and 4. In the last glaciation, the front was at its farthest north position, becoming pinned against the Tasmanian landmass. It moved south by 4° latitude to 47°S in summer during the deglaciation but remained north of 45°S in spring throughout the early deglaciation. After 11 ka B.P. inferred invigoration of the East Australia Current appears to have pushed the STF seasonally south of the East Tasman Plateau, until after 6 ka B.P. when it achieved its present configuration.
Resumo:
Analyses by atomic absorption spectrophotometry and spark-source mass spectrography of 25 basal metalliferous sediment units from widely spaced locations on the western flank of the East Pacific Rise show that the deposits are enriched relative to normal pelagic sediment in Fe, Mn, Ni, Cu, Pb, Zn, and many trace elements. The elements are partitioned differently between the various mineralogic constituents of the sediment, with Fe and Mn largely in separate phases and many of the remaining elements primarily associated with reducible ferromanganese oxide minerals but also with iron minerals and other phases. Most of the iron in the deposits is probably of volcanic origin, and much of the manganese and minor elements is derived from sea water. The bulk composition of the deposits varies with age; this is thought to be due to variations in the incidence of volcanic activity at the East Pacific Rise crest where the deposits were formed.
Resumo:
We present sea surface temperature (SST) estimates based on the relative abundances of long-chain C37 alkenones (UK37') in four sediment cores from a transect spanning the subtropical to subantarctic waters across the subtropical front east of New Zealand. SST estimates from UK37' are compared to those derived from foraminiferal assemblages (using the modern analog technique) in two of these cores. Reconstructions of SST in core tops and Holocene sediments agree well with modern average summer temperatures of ~18°C in subtropical waters and ~14°C in subpolar waters, with a 4°-5°C gradient across the front. Down core UK37' SST estimates indicate that the regional summer SST was 4°-5°C cooler during the last glaciation with an SST of ~10°C in subpolar waters and an SST of ~14°C in subtropical waters. Temperature reconstructions from foraminiferal assemblages agree with those derived from alkenones for the Holocene. In subtropical waters, reconstructions also agree with a glacial cooling of 4° to ~14°C. In contrast, reconstructions for subantarctic pre-Holocene waters indicate a cooling of 8°C with glacial age warm season water temperatures of ~6°C. Thus the alkenones suggest the glacial temperature gradient across the front was the same or reduced slightly to 3.5°-4°C, whereas foraminiferal reconstructions suggest it doubled to 8°C. Our results support previous work indicating that the STF remained fixed over the Chatham Rise during the Last Glacial Maximum. However, the differing results from the two techniques require additional explanation. A change in euphotic zone temperature profiles, seasonality of growth, or preferred growth depth must have affected the temperatures recorded by these biologically based proxies. Regardless of the specific reason, a differential response to the environmental changes between the two climate regimes by the organisms on which the estimates are based suggests increased upwelling associated with increased winds and/or a shallowing of the thermocline associated with increased stratification of the surface layer in the last glaciation.
Resumo:
Magmatic rocks of the Shatsky Rise form two groups replacing one another in time. The earlier ferrotholeiites enriched in potassium compose large massifs. Trachybasalts form seamounts and neotectonic ridges. Composition of volcanites indicates that two sources of magmatism took part in their formation: a depleted source characteristic of basalts of mid-ocean ridges and a ''plume'' source participating in formation of oceanic plateaus.
Resumo:
The accumulation of wind blown (eolian) dust in deep-sea sediments reflects the aridity/humidity conditions of the continental region supplying the dust, as well as the "gustiness" of the climate system. Detailed studies of Pleistocene glacial-interglacial dust fluxes suggest changes in accumulation rates corresponding to orbital variations in solar insolation (Milankovitch cycles). While the orbital cycles found in sedimentary archives of the Pleistocene are intricately related to glacial growth and decay, similar global orbital signals recognized in deep-sea sediments of early Paleogene age, the last major greenhouse interval ~65-45 million years ago, could not have been linked to the waxing and waning of large ice sheets. Thus orbital signals recorded in early Paleogene sediments must reflect some other climate response to changes in solar insolation. To explore the potential connection between orbital forcing and the climate processes that control dust accumulation, we generated a high-resolution dust record for ~58 Myr old sediments from Shatsky Rise (ODP Site 1209, paleolatitude ~15°N-20°N). The dust accumulation data provide the first evidence of a correlation between dust flux to the deep sea and orbital cyclicity during the early Paleogene, indicating dust supply responded to insolation forcing during the last major interval of greenhouse climate. Furthermore, the relative amplitude of the dust flux response during the early Paleogene greenhouse was comparable to that during icehouse climates. Thus, subtle variations in solar insolation driven by changes in Earth's orbit about the Sun may have had a similar impact on climate during intervals of overall warmth as they did during glacial-interglacial states.
Resumo:
At Sites 689 and 690, drilled during ODP (Ocean Drilling Program) Leg 113 on the Maud Rise (southeast Weddell Sea), moderately to well preserved radiolarian assemblages were obtained from continuously recovered upper Oligocene and Neogene sequences. Based on radiolarian investigations, a biostratigraphic zonation for a time interval covering the late Oligocene to the middle Miocene is proposed. The radiolarian zonation comprises 10 zones. Five zones are new, and five zones previously defined by Chen (1975) were modified. The zones and the ranges of the nominate species are directly calibrated with a geomagnetic polarity record. This is the first attempt at a direct correlation of late Oligocene to middle Miocene radiolarian zones with the geomagnetic time scale. Six hiatuses were delineated in the studied upper Oligocene to middle Miocene sections. One major hiatus, spanning ca. 6 m.y., is between the upper Oligocene and the lower Miocene sequences. Another important hiatus separates the lower and middle Miocene sediments. As a base for the biostratigraphic investigations, a detailed taxonomic study of the recovered radiolarian taxa is achieved. Three new radiolarian species that occur in upper Oligocene and lower Miocene sediments are described (Cycladophora antiqua, Cyrtocapsella robusta, and Velicucullus altus).
Resumo:
Shatsky Rise, a medium-sized large igneous province in the west Central Pacific Ocean, has three main topographic highs that preserve a thick sedimentary record from Cretaceous through Cenozoic. During Ocean Drilling Program (ODP) Leg 198 to Shatsky Rise, a total of ~768 m of late Miocene-Holocene sediments was recovered from six sites. Sites 1207 and 1208 were drilled on the Northern and Central Highs, respectively, and yielded expanded late Miocene-Holocene sequences. Sites 1209, 1210, 1211, and 1212 were drilled on the Southern High and yielded shorter sequences of similar age. Clearly interpretable magnetic stratigraphies were obtained from all sites using the shipboard pass-through magnetometer. These results were augmented using discrete sample cubes (7 cm**3) collected shipboard and measured postcruise. Miocene age sediments are separated by a hiatus from Oligocene, Eocene, and Cretaceous age sediments beneath. An astrochronological age model was developed for the six sites based on cycles observed in reflectance data, measured shipboard. This age model is in good agreement with published astrochronological polarity chron ages in the 1 to 6 Ma interval.
Resumo:
Five species of Bolboforma have been found in middle Eocene to lower Oligocene sediments from Maud Rise, Weddel Sea, Antarctica (Leg 113, Holes 689B and 690B), the first reported Bolboforma from the Antarctic Paleogene. The previous oldest known occurrences of Bolboforma in the world's oceans were of late Eocene age and this study extends the known range to the middle middle Eocene (~ 44 Ma). Highest species diversity of Bolboforma in the Weddell Sea region of Antarctica occurred during the late Eocene, after which all but one important species disappeared before the Eocene/Oligocene boundary (36.5 Ma). The remaining species, B. irregularis, disappeared soon after, during the earliest Oligocene. The disappearance of Bolboforma in this region of Antarctica coincided with significant climatic cooling that occurred at the end of the Eocene and during the earliest Oligocene, when subpolar replaced temperate conditions. Bolboforma is not known from younger sediments in the Antarctic except for a brief interval during the late early Miocene, an interval of Neogene climatic warmth. The presence of Bolboforma in Eocene to lower Oligocene sequences in the Weddell Sea region of Antarctica is therefore consistent with this taxon's previously recognized association with temperate water masses. Bolboforma is of limited biostratigraphic value at present, because of relatively long stratigraphic ranges and diachronous extinctions. Previous suggestions that Bolboforma represents an encystment stage of phytoplankton require further critical study because the deposition, in large numbers, at paleodepths up to 2250 m in the open ocean, is an unlikely strategy for an encystment phase of a phytoplanktonic organism. A new species, Bolboforma antarctica, is described, exhibiting a stratigraphic range from middle middle Eocene to the upper Eocene (~ 44 to 39 Ma).
Resumo:
We use sediment cores from the South Tasman Rise (STR) to reconstruct deep- water circulation in the southwest Pacific sector of the Southern Ocean. Sediment cores MD972106 (45° 09' S, 146° 17' E, 3310 m water depth) and GC34 (45° 06' S, 147° 45' E, 4002 m water depth) preserve records covering the last 160 kyr, with chronology controlled by calibrated accelerator mass spectrometry radiocarbon dates and benthic foraminiferal d18O tied to SPECMAP. The STR benthic foraminiferal d13C records provide new d13C values for Southern Ocean deep water spanning the last 160 kyr at sites unlikely to be affected by variations in productivity. The records establish that glacial benthic foraminifera (Cibicidoides spp.) d13C values are lower relative to interglacial values and are comparable to previous glacial benthic d13C records in the Indian and Pacific sectors of the Southern Ocean. Comparisons of the benthic foraminiferal d13C time series at the STR are made with the equatorial Pacific (V19-30 and Site 846) and the equatorial Atlantic (GeoB1115). The similarity of benthic d13C records at the STR to the equatorial Pacific suggest the Southern Ocean deep-water mass closely tracked those of the deep Pacific, and the presence of a d13C gradient between the STR and the equatorial Atlantic suggests there was continual production of northern source deep water over the past 160 kyr.
Resumo:
Bioaccumulation of trace metals in carbonate shells of mussels and clams was investigated at seven hydrothermal vent fields of the Mid-Atlantic Ridge (Menez Gwen, Snake Pit, Rainbow, and Broken Spur) and the Eastern Pacific (9°N and 21°N at the East Pacific Rise and the southern trough of Guaymas Basin, Gulf of California). Mineralogical analysis showed that carbonate skeletons of mytilid mussel Bathymodiolus sp. and vesicomyid clam Calyptogena m. are composed mainly of calcite and aragonite, respectively. The first data were obtained for contents of a variety of chemical elements in bivalve carbonate shells from various hydrothermal vent sites. Analyses of chemical compositions (including Fe, Mn, Zn, Cu, Cd, Pb, Ag, Ni, Cr, Co, As, Se, Sb, and Hg) of 35 shell samples and 14 water samples from mollusk biotopes revealed influences of environmental conditions and some biological parameters on bioaccumulation of metals. Bivalve shells from hydrothermal fields with black smokers are enriched in Fe and Mn by factor of 20-30 relative to the same species from the Menez Gwen low-temperature vent site. It was shown that essential elements (Fe, Mn, Ni, and Cu) more actively accumulated during early ontogeny of the shells. High enrichment factors of most metals (n x 100 - n x 10000) indicate efficient accumulation function of bivalve carbonate shells. Passive metal accumulation owing to adsorption on shell surfaces was estimated to be no higher than 50% of total amount and varied from 14% for Fe to 46% for Mn.
Resumo:
Hydrothermal solutions were examined in a circulation system that started to develop after the 1991 volcanic eruption in the axial segment of the EPR between 9°45'N and 9°52'N. Within twelve years after this eruption, diffusion outflow of hot fluid from fractures in basaltic lavas gave way to focused seeps of hot solutions through channels of hydrothermal sulfide edifices. An example of the field Q demonstrates that from 1991 to 2003 H2S concentrations decreased from 86 to 1 mM/kg, and the Fe/H2S ratio simultaneously increased by factor 1.7. This fact can explain disappearance of microbial mats that were widespread within the fields before 1991. S isotopic composition of H2S does not depend on H2S concentration. This fact testifies rapid evolution of the hydrothermal system in the early years of its evolution. Carbon in CH4 from hot fluid sampled in 2003 is richer in 12C isotope than carbon in fluid from the hydrothermal field at 21°N EPR. It suggests that methane comes to the Q field from more than one source. Composition of particulate matter in hydrothermal solutions indicates that it was contributed by biological material. Experimental solutions with labeled substrates (t<70°C) show evidence of active processes of methane oxidation and sulfate reduction. Our results indicate that, during 12-year evolution of the hydrothermal system, composition of its solutions evolved and approached compositions of solutions in mature hydrothermal systems of the EPR.