894 resultados para water and energy nexus
Resumo:
NASA's Dynamics Explorer (DE) mission was designed to study the coupling between the Earth's magnetosphere, ionosphere and neutral thermosphere1. One area of major interest is the outflow of ionospheric plasma into the magnetosphere, the scale and significance of which is only now becoming apparent with the advent of mass-resolving, low-energy ion detectors. Here we compare observations of ion flows in the polar magnetosphere, made by the retarding ion mass spectrometer (RIMS)2 on DE1, with those made simultaneously in the topside ionosphere by the ion drift meter (IDM)3 on the lower-altitude DE2 spacecraft. The results show the dayside auroral ionosphere to be a significant and highly persistent source of plasma for the magnetosphere. The upwelling ionospheric ions are spatially dispersed, according to both their energy and mass, by the combined actions of the geomagnetic field and the dawn-to-dusk convection electric field, in an effect analogous to the operation of an ion mass spectrometer.
Resumo:
Changes in the depth of Lake Viljandi between 1940 and 1990 were simulated using a lake water and energy-balance model driven by standard monthly weather data. Catchment runoff was simulated using a one-dimensional hydrological model, with a two-layer soil, a single-layer snowpack, a simple representation of vegetation cover and similarly modest input requirements. Outflow was modelled as a function of lake level. The simulated record of lake level and outflow matched observations of lake-level variations (r = 0.78) and streamflow (r = 0.87) well. The ability of the model to capture both intra- and inter-annual variations in the behaviour of a specific lake, despite the relatively simple input requirements, makes it extremely suitable for investigations of the impacts of climate change on lake water balance.
Resumo:
We use the elliptic reconstruction technique in combination with a duality approach to prove a posteriori error estimates for fully discrete backward Euler scheme for linear parabolic equations. As an application, we combine our result with the residual based estimators from the a posteriori estimation for elliptic problems to derive space-error indicators and thus a fully practical version of the estimators bounding the error in the $ \mathrm {L}_{\infty }(0,T;\mathrm {L}_2(\varOmega ))$ norm. These estimators, which are of optimal order, extend those introduced by Eriksson and Johnson in 1991 by taking into account the error induced by the mesh changes and allowing for a more flexible use of the elliptic estimators. For comparison with previous results we derive also an energy-based a posteriori estimate for the $ \mathrm {L}_{\infty }(0,T;\mathrm {L}_2(\varOmega ))$-error which simplifies a previous one given by Lakkis and Makridakis in 2006. We then compare both estimators (duality vs. energy) in practical situations and draw conclusions.
Resumo:
We investigated the potential of soil moisture and nutrient amendments to enhance the biodegradation of oil in the soils from an ecologically unique semi-arid island. This was achieved using a series of controlled laboratory incubations where moisture or nutrient levels were experimentally manipulated. Respired CO2 increased sharply with moisture amendment reflecting the severe moisture limitation of these porous and semi-arid soils. The greatest levels of CO2 respiration were generally obtained with a soil pore water saturation of 50–70%. Biodegradation in these nutrient poor soils was also promoted by the moderate addition of a nitrogen fertiliser. Increased biodegradation was greater at the lowest amendment rate (100 mg N kg−1 soil) than the higher levels (500 or 1,000 mg N kg−1 soil), suggesting the higher application rates may introduce N toxicity. Addition of phosphorous alone had little effect, but a combined 500 mg N and 200 mg P kg−1 soil amendment led to a synergistic increase in CO2 respiration (3.0×), suggesting P can limit the biodegradation of hydrocarbons following exogenous N amendment.
Resumo:
Deuterium (dD) and oxygen (d18O) isotopes are powerful tracers of the hydrological cycle and have been extensively used for paleoclimate reconstructions as they can provide information on past precipitation, temperature and atmospheric circulation. More recently, the use of 17Oexcess derived from precise measurement of d17O and d18O gives new and additional insights in tracing the hydrological cycle whereas uncertainties surround this proxy. However, 17Oexcess could provide additional information on the atmospheric conditions at the moisture source as well as about fractionations associated with transport and site processes. In this paper we trace water stable isotopes (dD, d17O and d18O) along their path from precipitation to cave drip water and finally to speleothem fluid inclusions for Milandre cave in northwestern Switzerland. A two year-long daily resolved precipitation isotope record close to the cave site is compared to collected cave drip water (3 months average resolution) and fluid inclusions of modern and Holocene stalagmites. Amount weighted mean dD, d18O and d17O are �71.0‰, �9.9‰, �5.2‰ for precipitation, �60.3‰, �8.7‰, �4.6‰ for cave drip water and �61.3‰, �8.3‰, �4.7‰ for recent fluid inclusions respectively. Second order parameters have also been derived in precipitation and drip water and present similar values with 18 per meg for 17Oexcess whereas d-excess is 1.5‰ more negative in drip water. Furthermore, the atmospheric signal is shifted towards enriched values in the drip water and fluid inclusions (D of ~ þ 10‰ for dD). The isotopic composition of cave drip water exhibits a weak seasonal signal which is shifted by around 8e10 months (groundwater residence time) when compared to the precipitation. Moreover, we carried out the first d17O measurement in speleothem fluid inclusions, as well as the first comparison of the d17O behaviour from the meteoric water to the fluid inclusions entrapment in speleothems. This study on precipitation, drip water and fluid inclusions will be used as a speleothem proxy calibration for Milandre cave in order to reconstruct paleotemperatures and moisture source variations for Western Central Europe.
Resumo:
Giardia duodenalis is a protozoan that parasitizes humans and other mammals and causes giardiasis. Although its isolates have been divided into seven assemblages, named A to G, only A and B have been detected in human faeces. Assemblage A isolates are commonly divided into two genotypes, AI and AII. Even though information about the presence of this protozoan in water and sewage is available in Brazil, it is important to verify the distribution of different assemblages that might be present, which can only be done by genotyping techniques. A total of 24 raw and treated sewage, surface and spring water samples were collected, concentrated and purified. DNA was extracted, and a nested PCR was used to amplify an 890 bp fragment of the gdh gene of G. duodenalis, which codes for glutamate dehydrogenase. Positive samples were cloned and sequenced. Ten out of 24 (41.6%) samples were confirmed to be positive for G. duodenalis by sequencing. Phylogenetic analysis grouped most sequences with G. duodenalis genotype AII from GenBank. Only two raw sewage samples presented sequences assigned to assemblage B. In one of these samples genotype AII was also detected. As these assemblages/genotypes are commonly associated to human giardiasis, the contact with these matrices represents risk for public health.
Resumo:
Chen LM, Zhao J, Musa-Aziz R, Pelletier MF, Drummond IA, Boron WF. Cloning and characterization of a zebrafish homologue of human AQP1: a bifunctional water and gas channel. Am J Physiol Regul Integr Comp Physiol 299: R1163-R1174, 2010. First published August 25, 2010; doi:10.1152/ajpregu.00319.2010.-The mammalian aquaporins AQP1, AQP4, and AQP5 have been shown to function not only as water channels but also as gas channels. Zebrafish have two genes encoding an AQP1 homologue, aqp1a and aqp1b. In the present study, we cloned the cDNA that encodes the zebrafish protein Aqp1a from the 72-h postfertilization (hpf) embryo of Danio rerio, as well as from the swim bladder of the adult. The deduced amino-acid sequence of aqp1a consists of 260 amino acids and is 59% identical to human AQP1. By analyzing the genomic DNA sequence, we identified four exons in the aqp1a gene. By in situ hybridization, aqp1a is expressed transiently in the developing vasculature and in erythrocytes from 16 to 48 h of development. Later, at 72 hpf, aqp1a is expressed in dermal ionocytes and in the swim bladder. Western blot analysis of adult tissues reveals that Aqp1a is most highly expressed in the eye and swim bladder. Xenopus oocytes expressing aqp1a have a channel-dependent (*) osmotic water permeability (P(f)*) that is indistinguishable from that of human AQP1. On the basis of the magnitude of the transient change in surface pH (Delta pHS) that were recorded as the oocytes were exposed to either CO(2) or NH(3), we conclude that zebrafish Aqp1a is permeable to both CO(2) and NH(3). The ratio (Delta pHS*)CO2/P(f)* is about half that of human AQP1, and the ratio (Delta pHS*)NH3/P(f)* is about one-quarter that of human AQP1. Thus, compared with human AQP1, zebrafish Aqp1a has about twice the selectivity for CO(2) over NH(3).
Resumo:
The present study examined the effects of aerobic training and energy restriction on adipokines levels in mesenteric (MEAT) and retroperitoneal (RPAT) white adipose tissue from obese rats. Male Wistar rats were fed with standard laboratory diet (Control group) or high fat diet (HFD). After 15 weeks, HFD rats were randomly assigned to the following groups: rats submitted to HFD, which were sedentary (sedentary HFD, n = 8) or trained (trained HFD, n = 8); or submitted to energy-restriction (ER), which were sedentary (sedentary ER, n = 8) or trained (trained ER, n = 8). Trained rats ran on a treadmill at 55% VO(2max) for 60 min/day, 5 days/week, for 10 weeks. ER rats were submitted to a reduction of 20% daily caloric ingestion compared to the Control group. ER and aerobic training decreased body weight, MEAT and RPAT absolute weight, and fat mass. IL-6, IL-10 and TNF-alpha levels were decreased and adiponectin did not change in RPAT in response to ER protocol. On the other hand, ER and the aerobic training protocol decreased IL-6, TNF-alpha and adiponectin levels in MEAT. Absolute MEAT weight showed a positive correlation with IL-6 (r = 0.464), INF-alpha (r = 0.508); and adiponectin (r = 0.342). These results suggest a tissue-specific heterogeneous response in adipokines level. The combination of the protocols (aerobic training and energy restriction) did not induce an enhanced effect. Published by Elsevier Ltd.
Resumo:
We investigated the seasonal patterns of water vapor and sensible heat flux along a tropical biome gradient from forest to savanna. We analyzed data from a network of flux towers in Brazil that were operated within the Large-Scale Biosphere-Atmosphere Experiment in Amazonia (LBA). These tower sites included tropical humid and semideciduous forest, transitional forest, floodplain (with physiognomies of cerrado), and cerrado sensu stricto. The mean annual sensible heat flux at all sites ranged from 20 to 38 Wm(-2), and was generally reduced in the wet season and increased in the late dry season, coincident with seasonal variations of net radiation and soil moisture. The sites were easily divisible into two functional groups based on the seasonality of evaporation: tropical forest and savanna. At sites with an annual precipitation above 1900 mm and a dry season length less than 4 months (Manaus, Santarem and Rondonia), evaporation rates increased in the dry season, coincident with increased radiation. Evaporation rates were as high as 4.0 mm d(-1) in these evergreen or semidecidous forests. In contrast, ecosystems with precipitation less than 1700 mm and a longer dry season (Mato Grosso, Tocantins and Sao Paulo) showed clear evidence of reduced evaporation in the dry season. Evaporation rates were as low as 2.5 mm d(-1) in the transitional forests and 1 mm d(-1) in the cerrado. The controls on evapotranspiration seasonality changed along the biome gradient, with evaporative demand (especially net radiation) playing a more important role in the wetter forests, and soil moisture playing a more important role in the drier savannah sites.
Surfactant-nanotube interactions in water and nanotube separation by diameter: atomistic simulations
Resumo:
A non-destructive sorting method to separate single-walled carbon nanotubes (SWNTs) by diameter was recently proposed. By this method, SWNTs are suspended in water by surfactant encapsulation and the separation is carried out by ultracentrifugation in a density gradient. SWNTs of different diameters are distributed according to their densities along the centrifuge tube. A mixture of two anionic surfactants, namely sodium dodecylsulfate (SDS) and sodium cholate (SC), presented the best performance in discriminating nanotubes by diameter. Unexpectedly, small diameter nanotubes are found at the low density part of the centrifuge tube. We present molecular dynamics studies of the water-surfactant-SWNT system to investigate the role of surfactants in the sorting process. We found that surfactants can actually be attracted towards the interior of the nanotube cage, depending on the relationship between the surfactant radius of gyration and the nanotube diameter. The dynamics at room temperature showed that, as the amphiphile moves to the hollow cage, water molecules are dragged together, thereby promoting the nanotube filling. The resulting densities of filled SWNT are in agreement with measured densities.
Resumo:
A high incidence of waterborne diseases is observed worldwide and in order to address contamination problems prior to an outbreak, quantitative microbial risk assessment is a useful tool for estimating the risk of infection. The objective of this paper was to assess the probability of Giardia infection from consuming water from shallow wells in a peri-urban area. Giardia has been described as an important waterborne pathogen and reported in several water sources, including ground waters. Sixteen water samples were collected and examined according to the US EPA (1623, 2005). A Monte Carlo method was used to address the potential risk as described by the exponential dose response model. Giardia cysts occurred in 62.5% of the samples (0.1-36.1 cysts/l). A median risk of 10-1 for the population was estimated and the adult ingestion was the highest risk driver. This study illustrates the vulnerability of shallow well water supply systems in peri-urban areas.
Resumo:
International carbon credit markets are based in differences between developing and developed countries greenhouse gases emissions mitigation costs and technological limits faced by developed countries. Potential of energy efficiency measures to reduce fossil fuel usage in Brazilian industrial segments is assessed, and analysis of such potentials singles out those segments and regions more apt to generate carbon credits through Clean Development Mechanism (CDM) projects. Though there are currently few Brazilian CDM projects, their number may be significantly increased, which is a positive outcome. For this purpose, it is crucial that energy conservation programs estimate how CDM may improve their economic competitiveness.
Resumo:
A novel approach was developed for nitrate analysis in a FIA configuration with amperometric detection (E=-0.48 V). Sensitive and reproducible current measurements were achieved by using a copper electrode activated with a controlled potential protocol. The response of the FIA amperometric method was linear over the range from 0.1 to 2.5 mmol L(-1) nitrate with a detection limit of 4.2 mu mol L(-1) (S/N = 3). The repeatability of measurements was determined as 4.7% (n=9) at the best conditions (flow rate: 3.0 mL min(-1), sample volume: 150 mu L and nitrate concentration: 0.5 mmol L(-1)) with a sampling rate of 60 samples h(-1). The method was employed for the determination of nitrate in mineral water and soft drink samples and the results were in agreement with those obtained by using a recommended procedure. Studies towards a selective monitoring of nitrite were also performed in samples containing nitrate by carrying out measurements at a less negative potential (-0.20 V). (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
A method for the determination of pesticide residues in water and sediment was developed using the QuEChERS method followed by gas chromatography - mass spectrometry. The method was validated in terms of accuracy, specificity, linearity, detection and quantification limits. The recovery percentages obtained for the pesticides in water at different concentrations ranged from 63 to 116%, with relative standard deviations below 12%. The corresponding results from the sediment ranged from 48 to 115% with relative standard deviations below 16%. The limits of detection for the pesticides in water and sediment were below 0.003 mg L(-1) and 0.02 mg kg(-1), respectively.