914 resultados para vhdl, pseudo, random, misure, impedenza
Resumo:
Purpose: The authors aim at developing a pseudo-time, sub-optimal stochastic filtering approach based on a derivative free variant of the ensemble Kalman filter (EnKF) for solving the inverse problem of diffuse optical tomography (DOT) while making use of a shape based reconstruction strategy that enables representing a cross section of an inhomogeneous tumor boundary by a general closed curve. Methods: The optical parameter fields to be recovered are approximated via an expansion based on the circular harmonics (CH) (Fourier basis functions) and the EnKF is used to recover the coefficients in the expansion with both simulated and experimentally obtained photon fluence data on phantoms with inhomogeneous inclusions. The process and measurement equations in the pseudo-dynamic EnKF (PD-EnKF) presently yield a parsimonious representation of the filter variables, which consist of only the Fourier coefficients and the constant scalar parameter value within the inclusion. Using fictitious, low-intensity Wiener noise processes in suitably constructed ``measurement'' equations, the filter variables are treated as pseudo-stochastic processes so that their recovery within a stochastic filtering framework is made possible. Results: In our numerical simulations, we have considered both elliptical inclusions (two inhomogeneities) and those with more complex shapes (such as an annular ring and a dumbbell) in 2-D objects which are cross-sections of a cylinder with background absorption and (reduced) scattering coefficient chosen as mu(b)(a)=0.01mm(-1) and mu('b)(s)=1.0mm(-1), respectively. We also assume mu(a) = 0.02 mm(-1) within the inhomogeneity (for the single inhomogeneity case) and mu(a) = 0.02 and 0.03 mm(-1) (for the two inhomogeneities case). The reconstruction results by the PD-EnKF are shown to be consistently superior to those through a deterministic and explicitly regularized Gauss-Newton algorithm. We have also estimated the unknown mu(a) from experimentally gathered fluence data and verified the reconstruction by matching the experimental data with the computed one. Conclusions: The PD-EnKF, which exhibits little sensitivity against variations in the fictitiously introduced noise processes, is also proven to be accurate and robust in recovering a spatial map of the absorption coefficient from DOT data. With the help of shape based representation of the inhomogeneities and an appropriate scaling of the CH expansion coefficients representing the boundary, we have been able to recover inhomogeneities representative of the shape of malignancies in medical diagnostic imaging. (C) 2012 American Association of Physicists in Medicine. [DOI: 10.1118/1.3679855]
Resumo:
Given two independent Poisson point processes Phi((1)), Phi((2)) in R-d, the AB Poisson Boolean model is the graph with the points of Phi((1)) as vertices and with edges between any pair of points for which the intersection of balls of radius 2r centered at these points contains at least one point of Phi((2)). This is a generalization of the AB percolation model on discrete lattices. We show the existence of percolation for all d >= 2 and derive bounds fora critical intensity. We also provide a characterization for this critical intensity when d = 2. To study the connectivity problem, we consider independent Poisson point processes of intensities n and tau n in the unit cube. The AB random geometric graph is defined as above but with balls of radius r. We derive a weak law result for the largest nearest-neighbor distance and almost-sure asymptotic bounds for the connectivity threshold.
Resumo:
The repeated or closely spaced eigenvalues and corresponding eigenvectors of a matrix are usually very sensitive to a perturbation of the matrix, which makes capturing the behavior of these eigenpairs very difficult. Similar difficulty is encountered in solving the random eigenvalue problem when a matrix with random elements has a set of clustered eigenvalues in its mean. In addition, the methods to solve the random eigenvalue problem often differ in characterizing the problem, which leads to different interpretations of the solution. Thus, the solutions obtained from different methods become mathematically incomparable. These two issues, the difficulty of solving and the non-unique characterization, are addressed here. A different approach is used where instead of tracking a few individual eigenpairs, the corresponding invariant subspace is tracked. The spectral stochastic finite element method is used for analysis, where the polynomial chaos expansion is used to represent the random eigenvalues and eigenvectors. However, the main concept of tracking the invariant subspace remains mostly independent of any such representation. The approach is successfully implemented in response prediction of a system with repeated natural frequencies. It is found that tracking only an invariant subspace could be sufficient to build a modal-based reduced-order model of the system. Copyright (C) 2012 John Wiley & Sons, Ltd.
Resumo:
The spatial search problem on regular lattice structures in integer number of dimensions d >= 2 has been studied extensively, using both coined and coinless quantum walks. The relativistic Dirac operator has been a crucial ingredient in these studies. Here, we investigate the spatial search problem on fractals of noninteger dimensions. Although the Dirac operator cannot be defined on a fractal, we construct the quantum walk on a fractal using the flip-flop operator that incorporates a Klein-Gordon mode. We find that the scaling behavior of the spatial search is determined by the spectral (and not the fractal) dimension. Our numerical results have been obtained on the well-known Sierpinski gaskets in two and three dimensions.
Resumo:
In 2003, Babin et al. theoretically predicted (J. Appl. Phys. 94:4244, 2003) that fabrication of organic-inorganic hybrid materials would probably be required to implement structures with multiple photonic band gaps. In tune with their prediction, we report synthesis of such an inorganic-organic nanocomposite, comprising Cu4O3-CuO-C thin films that experimentally exhibit the highest (of any known material) number (as many as eleven) of photonic band gaps in the near infrared. On contrary to the report by Wang et al. (Appl. Phys. Lett. 84:1629, 2004) that photonic crystals with multiple stop gaps require highly correlated structural arrangement such as multilayers of variable thicknesses, we demonstrate experimental realization of multiple stop gaps in completely randomized structures comprising inorganic oxide nanocrystals (Cu4O3 and CuO) randomly embedded in a randomly porous carbonaceous matrix. We report one step synthesis of such nanostructured films through the metalorganic chemical vapor deposition technique using a single source metalorganic precursor, Cu-4(deaH)(dea)(oAc)(5) a <...aEuro parts per thousand(CH3)(2)CO. The films displaying multiple (4/9/11) photonic band gaps with equal transmission losses in the infrared are promising materials to find applications as multiple channel photonic band gap based filter for WDM technology.
Resumo:
Novel random copolymers containing dithienylcyclopentadienone, thiophene and benzothiadiazole were synthesized and photovoltaic properties of these materials were evaluated. Thermal, structural, optical and electrochemical characterization of the synthesized copolymers was carried out. These thermally stable copolymers are solution processable unlike the homopolymer. The absorption spectra indicated that with the incorporation of alkyl chains in the thiophene moiety, the onset of absorption increases and hence band gap decreases (1.47 eV to 1.41 eV). Bulk heterojunction solar cells were fabricated with the blend of copolymer and phenyl-C61-butyric acid methyl ester (PCBM) as the active material and device parameters were extracted. The copolymer consists of alkyl thiophene exhibit higher open circuit voltage than the copolymer consisting of thiophene moiety. (c) 2012 Elsevier B.V. All rights reserved.
Resumo:
Wireless sensor networks can often be viewed in terms of a uniform deployment of a large number of nodes in a region of Euclidean space. Following deployment, the nodes self-organize into a mesh topology with a key aspect being self-localization. Having obtained a mesh topology in a dense, homogeneous deployment, a frequently used approximation is to take the hop distance between nodes to be proportional to the Euclidean distance between them. In this work, we analyze this approximation through two complementary analyses. We assume that the mesh topology is a random geometric graph on the nodes; and that some nodes are designated as anchors with known locations. First, we obtain high probability bounds on the Euclidean distances of all nodes that are h hops away from a fixed anchor node. In the second analysis, we provide a heuristic argument that leads to a direct approximation for the density function of the Euclidean distance between two nodes that are separated by a hop distance h. This approximation is shown, through simulation, to very closely match the true density function. Localization algorithms that draw upon the preceding analyses are then proposed and shown to perform better than some of the well-known algorithms present in the literature. Belief-propagation-based message-passing is then used to further enhance the performance of the proposed localization algorithms. To our knowledge, this is the first usage of message-passing for hop-count-based self-localization.
Resumo:
We propose a distribution-free approach to the study of random geometric graphs. The distribution of vertices follows a Poisson point process with intensity function n f(center dot), where n is an element of N, and f is a probability density function on R-d. A vertex located at x connects via directed edges to other vertices that are within a cut-off distance r(n)(x). We prove strong law results for (i) the critical cut-off function so that almost surely, the graph does not contain any node with out-degree zero for sufficiently large n and (ii) the maximum and minimum vertex degrees. We also provide a characterization of the cut-off function for which the number of nodes with out-degree zero converges in distribution to a Poisson random variable. We illustrate this result for a class of densities with compact support that have at most polynomial rates of decay to zero. Finally, we state a sufficient condition for an enhanced version of the above graph to be almost surely connected eventually.
Resumo:
Using the spectral multiplicities of the standard torus, we endow the Laplace eigenspaces with Gaussian probability measures. This induces a notion of random Gaussian Laplace eigenfunctions on the torus (''arithmetic random waves''). We study the distribution of the nodal length of random eigenfunctions for large eigenvalues, and our primary result is that the asymptotics for the variance is nonuniversal. Our result is intimately related to the arithmetic of lattice points lying on a circle with radius corresponding to the energy.
Resumo:
Effective conservation and management of natural resources requires up-to-date information of the land cover (LC) types and their dynamics. The LC dynamics are being captured using multi-resolution remote sensing (RS) data with appropriate classification strategies. RS data with important environmental layers (either remotely acquired or derived from ground measurements) would however be more effective in addressing LC dynamics and associated changes. These ancillary layers provide additional information for delineating LC classes' decision boundaries compared to the conventional classification techniques. This communication ascertains the possibility of improved classification accuracy of RS data with ancillary and derived geographical layers such as vegetation index, temperature, digital elevation model (DEM), aspect, slope and texture. This has been implemented in three terrains of varying topography. The study would help in the selection of appropriate ancillary data depending on the terrain for better classified information.
Resumo:
The paper focuses on reliability based design of bridge abutments when subjected to earthquake loading. Planar failure surface has been used in conjunction with pseudo-dynamic approach to compute the seismic active earth pressures on the bridge abutment. The proposed pseudo dynamic method, considers the effects of strain localization in the backfill soil and associated post-peak reduction in the shear resistance from peak to residual values along a previously formed failure plane, phase difference in shear waves and soil amplification along with the horizontal seismic accelerations. Four modes of stability viz. sliding, overturning, eccentricity and bearing capacity of the foundation soil are considered for the reliability analysis. The influence of various design parameters on the seismic reliability indices against four modes of failure is presented, following the suggestions of Japan Road Association, Caltrans Bridge Design Specifications and U.S Department of the Army.
Resumo:
In this paper the seismic slope stability analyses are performed for a typical section of 44 m high water retention type tailings earthen dam located in the eastern part of India, using both the conventional pseudo-static and recent pseudo-dynamic methods. The tailings earthen dam is analyzed for different upstream conditions of reservoir like filled up with compacted and non-compacted dumped waste materials with different water levels of the pond tailings portion. Phreatic surface is generated using seepage analysis in geotechnical software SEEP/W and that same is used in the pseudo-static and pseudo-dynamic analyses to make the approach more realistic. The minimum values of factor of safety using pseudo-static and pseudo-dynamic method are obtained as 1.18 and 1.09 respectively for the chosen seismic zone in India. These values of factor of safety show clearly the demerits of conventional pseudo-static analysis compared to recent pseudo-dynamic analysis, where in addition to the seismic accelerations, duration, frequency of earthquake, body waves traveling during earthquake and amplification effects are considered.
Resumo:
The random eigenvalue problem arises in frequency and mode shape determination for a linear system with uncertainties in structural properties. Among several methods of characterizing this random eigenvalue problem, one computationally fast method that gives good accuracy is a weak formulation using polynomial chaos expansion (PCE). In this method, the eigenvalues and eigenvectors are expanded in PCE, and the residual is minimized by a Galerkin projection. The goals of the current work are (i) to implement this PCE-characterized random eigenvalue problem in the dynamic response calculation under random loading and (ii) to explore the computational advantages and challenges. In the proposed method, the response quantities are also expressed in PCE followed by a Galerkin projection. A numerical comparison with a perturbation method and the Monte Carlo simulation shows that when the loading has a random amplitude but deterministic frequency content, the proposed method gives more accurate results than a first-order perturbation method and a comparable accuracy as the Monte Carlo simulation in a lower computational time. However, as the frequency content of the loading becomes random, or for general random process loadings, the method loses its accuracy and computational efficiency. Issues in implementation, limitations, and further challenges are also addressed.
Resumo:
We say a family of geometric objects C has (l;k)-property if every subfamily C0C of cardinality at most lisk- piercable. In this paper we investigate the existence of g(k;d)such that if any family of objects C in Rd has the (g(k;d);k)-property, then C is k-piercable. Danzer and Gr̈ unbaum showed that g(k;d)is infinite for fami-lies of boxes and translates of centrally symmetric convex hexagons. In this paper we show that any family of pseudo-lines(lines) with (k2+k+ 1;k)-property is k-piercable and extend this result to certain families of objects with discrete intersections. This is the first positive result for arbitrary k for a general family of objects. We also pose a relaxed ver-sion of the above question and show that any family of boxes in Rd with (k2d;k)-property is 2dk- piercable.
Resumo:
A qualitative MO analysis suggests (PH3)(3)(2-) as a candidate for an all-pseudo-pi* 2 pi-aromatic; however computational studies rule out its existence. Fluorine substitution which increases the contribution of p orbitals on P in the pseudo-pi* MO makes (PF3)(3)(2-) a minimum and an aromatic. The 2 pi aromaticity arising from the bonding combination of the three pseudo-pi* fragment MOs is comparable to that in C3O32- and is another example for the analogy between CO and PF3. The dianion (PF3)(3)(2-) forms the first example of a three-membered ring with all the vertices constituted by pentacoordinate phosphorus. The ability of PF3 to form the all-pseudo-pi* 2 pi-aromatic system is not shared by the heavier analogues, AsF3 and SbF3.