986 resultados para vertical-cavity surface-emitting lasers


Relevância:

30.00% 30.00%

Publicador:

Resumo:

O trabalho teve por objetivo determinar, em casa-de-vegetação, a densidade adequada de adultos, a idade ideal das plantas e a distribuição vertical de ovos nas diferentes partes da planta, visando à realização de estudos de resistência e à melhoria das práticas de manejo de Spodoptera frugiperda em algodoeiro. Os experimentos de oviposição de S. frugiperda em relação à densidade de adultos, relação entre plantas de algodoeiro e oviposição de S. frugiperda e não preferência para oviposição de S. frugiperda em variedades de algodoeiro foram realizados com plantas da variedade de algodoeiro BRS Ita 90. A não preferência (antixenose) para oviposição foi acompanhada nas variedades FiberMax 966, FiberMax 977, DeltaOpal, DeltaPenta, Acala 90, Coodetec 408, Coodetec 409, Coodetec 410, BRS Cedro, BRS Ipê, BRS Aroeira, IPR 96, IPR 20, BRS Araçá, IAC 24 e BRS Ita 90. Concluiu-se que S. frugiperda prefere ovipositar em plantas com cerca de 60 dias de idade, na superfície inferior das folhas situadas no terço superior dos testes de plantas sob condições de estufa. Uma densidade de, pelo menos, três pares de adultos S. frugiperda por planta foi suficiente para realizar testes de não preferência para oviposição em casa de vegetação. As variedades Coodetec 408, BRS Aroeira, BRS Araçá, BRS Ita 90 e DeltaPenta apresentaram resistência do tipo não preferência para oviposição de S. frugiperda. Em regiões com altas infestações de S. frugiperda, seria prudente para o cultivo utilizar a variedade de algodão BRS Ita 90.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aim To assess (i) heat generated by pluggers during warm vertical compaction of gutta-percha and investigation of temperature changes on the external root surface during canal filling, and (ii) the chemical changes of root canal sealers induced by heat.Methodology Four sealers, namely AH Plus, MTA Plus and two other experimental sealers based on tricalcium silicate, were characterised. External temperatures generated on the root surface during warm vertical compaction of gutta-percha with different sealers inside the root canal were monitored using an infrared thermography camera. Chemical changes induced by heating the sealers were assessed by Fourier transform infrared (FT-IR) spectroscopy.Results MTA Plus and the experimental sealers were composed of a cement and radiopacifier, with epoxy resin or a water-soluble polymer as dispersant, whilst AH Plus was epoxy resin-based. The heat generated at the tips of the continuous wave pluggers was found to be lower than the temperature set and indicated on the device LCD display. The sealers reduced the heat generated on the external root surfaces during the heating phase. AH Plus sustained changes to its chemical structure after exposure to heat, whilst the other sealers were unaffected.Conclusions The temperatures recorded at the tips of continuous wave pluggers varied with their taper and were lower than the temperature set on the System B LCD display. Root canal sealers reduced the dissipation of heat generated during warm vertical compaction, with the temperature at the external root surface maintained at 37-41 degrees C, a temperature below that is necessary to cause irreversible damage to bone and periodontium. The use of AH Plus sealer during warm vertical compaction techniques results in chemical changes in the sealer. The effect on sealer properties needs to be further investigated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To evaluate the effect of surface treatment with Er:YAG and Nd:YAG laser on resin composite bond strength to recently bleached dentin. Material and Methods: In this study 120 bovine incisors were used and distributed into two groups: Group C: without bleaching treatment; Group B: with bleaching treatment (35% hydrogen peroxide). Each group was divided into three subgroups: Subgroup N: without laser treatment; Subgroup Nd: irradiation with Nd:YAG laser; Subgroup Er: irradiation with Er:YAG laser. Next, the adhesive system (Adper Single Bond 2) was applied and composite buildups were constructed with Z350 composite. The teeth were sectioned to obtain dentin-resin sticks (1x1mm) and analyzed by microtensile bond testing. The data were statistically analyzed by the ANOVA and Tukey tests. Results: The results showed that the bond strength values in the bleached control group (16.17 MPa) presented no significant difference in comparison with the group bleached and irradiated with Er:YAG laser (14.69 MPa). The non bleached control group (26.79 MPa) presented significant difference in bond strength when compared with the non bleached group irradiated with Er:YAG laser (22.82 MPa) and with the group treated by bleaching and irradiation with Nd:YAG laser (28,792 MPa). The group without bleaching treatment and irradiated with Nd:YAG (36.1 MPa) presented a significant increase in bond strength in comparison with the other groups. Conclusion: The use of Nd:YAG laser on bleached specimens was able of completely reversing the immediate effects of bleaching, obtaining bond strength values similar to those of the control group

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To evaluate the porosity, surface roughness and anti-biofilm activity of a glass-ionomer cement (GIC) after incorporation of different concentrations of chlorhexidine (CHX) gluconate or diacetate. Methods: For the porosity and surface roughness tests, 10 test specimens were fabricated of the GIC Ketac Molar Easy Mix (KM) and divided into the following groups: Control, GIC and 0.5% CHX diacetate; GIC and 1.0% CHX diacetate; GIC and 2.0% CHX diacetate; GIC and 0.5% CHX gluconate; GIC and 1.0% CHX gluconate; GIC and 2.0% CHX gluconate. To evaluate porosity, the test specimens were fractured. The fragments were photographed by scanning electron microscopy (SEM), and the images analyzed with the aid of the software program Image J. The surface roughness (Ra) was obtained by the mean value of three readouts performed on the surface of each specimen, always through the center. To analyze the anti-biofilm activity, strains of S. mutans ATCC 35688 were used, and the groups control and GIC +CHX diacetate 1% were divided as follows: GIC (1 day); GIC (7 days), GIC (14 days), GIC (21 days); GIC+CHX (1 day), GIC+CHX (7 days), GIC+CHX (14 days), GIC+CHX (21 days); GIC+ CHX (1 day), GIC+ CHX (7 days), GIC+ CHX (14 days) and GIC+ CHX (21 days) using 10 test specimens per group. For biofilm growth, the specimens were placed in a vertical position in 24-well plates and incubated overnight 10 times. The culture medium was renewed every 24 hours. The suspension was diluted and seeded on BHI agar for quantification of the bacteria present. For evaluation of all the tests the two-way ANOVA was used, and if necessary, the Tukey test was applied, with a level of significance of 5%. Results: Regarding GIC porosity, the ANOVA showed that the presence of CHX increased the porosity (P< 0.001) proportionally to the increase in concentrations (P= 0.001), without however, presenting interaction between material and concentration (P= 0.705). Regarding the number of pores, a significant increase in pores was observed with the increase in CHX concentration (P= 0.003). The surface roughness test demonstrated no statistically significant effect as to increase or reduction in roughness at any of the CHX concentrations used (P> 0.05). Anti-biofilm activity analysis pointed out a significant effect of the factors material (P= 0.006) and time (P< 0.001), with CHX diacetate CHX presenting greater effectiveness in reducing microorganisms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study aimed to evaluate the effect of Er:YAG (L) and diamond drills (DD) on: 1) the microshear bond strength (MPa); 2) the adhesive interface of two-step (TS) – Adper Scotchbond Multipurpose and one-step (OS) adhesives – Adper EasyOne, both from 3M ESPE. Material and methods: According to the preparation condition and adhesives, the samples were divided into four groups: DD_TS (control); DD_OS; L_TS and L_OS. 60 bovine incisors were randomly divided into experimental and groups: 40 for microshear bond strength (n = 10) and 20 for the adhesive interface morphology [6 to measure the thickness of the hybrid layer (HL) and length of tags (t) by CLSM (n = 3); 12 to the adhesive interface morphology by SEM (n = 3) and 2 to illustrate the effect of the instruments on dentine by SEM (n = 1)]. To conduct the microshear bond strength test, four cylinders (0.7 mm in diameter and 1 mm in height with area of adhesion of 0.38 mm) were constructed with resin composite (Filtek Z350 XT – 3M ESPE) on each dentin surface treated by either L or DD and after adhesives application. Microshear bond strength was performed in universal testing machine (EMIC 2000) with load cell of 500 kgf and a crosshead speed of 0.5 mm / min. Adhesive interface was characterized by thickness of hybrid layer (HL) and length of tags (t) in nm, with the aid of UTHSCSA ImageTool software. Results: Microshear bond strength values were: L_TS 34.10 ± 19.07, DD_TS 24.26 ± 9.35, L_OS 33.18 ± 12.46, DD_OS 21.24 ± 13.96. Two-way ANOVA resulted in statistically significant differences only for instruments (p = 0.047). Mann-Whitney identified the instruments which determined significant differences for HL thickness and tag length (t). Concerning to the adhesive types, these differences were only observed for (t). Conclusion: It can be concluded that 1) laser Er:YAG results in higher microshear bond strength values regardless of the adhesive system (TS and OS); 2) the tags did not significant affect the microshear bond strength; 3) the adhesive interface was affected by both the instruments for cavity preparation and the type of adhesive system used.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of this work was to evaluate the corrosion of commercially pure (CP) titanium and Ti6Al4V in vitro at different F- concentrations regularly found in the oral cavity by using different electrochemical tests and surface analysis techniques. electrochemical impedance spectroscopy (EIS), open circuit potential (OCP) and potentio-dynamic polarization tests were associated to advanced characterization techniques such as SEM, EDS, AFM, ICP-MS and XPS. OCP tests revealed a higher reactivity of both CP titanium and Ti6Al4V at 12,300 ppm F- concentration than that recorded at 227 ppm F-. Also, a significant decrease of the corrosion resistance of both materials was noticed by EIS in fluoride solutions. Material loss caused by corrosion was noticed on titanium surfaces by SEM and AFM in the presence of high F- concentration. CP titanium degraded by pitting corrosion while Ti6Al4V suffered from general corrosion showing micro-cracks on surface. Furthermore, a high release of metallic ions from the test samples after immersion at high F concentrations was detected by ICP-MS, that can be potentially toxic to oral tissues. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Refractive and profilometric measurements of lenses were performed through holography with a photorefractive Bi12TiO20 crystal as the recording medium. Two properly aligned diode lasers emitting in the red region were employed as light sources. Both lasers were tuned in order to provide millimetric and sub-millimetric synthetic wavelengths. The surfaces of the test lens were covered by a 25-μm opaque plastic tape in order to allow the lens profilometry upon illuminating them with a collimated beam. The resulting holographic images appear covered by interference fringes corresponding to the wavefront geometry of the wave scattered by the lens. For refractive index measurement a diffusely scattering flat surface was positioned behind the uncovered lens which was also illuminated by a plane wave. The resulting contour interferogram describes the form of the wavefront after the beam traveled back and forth through the lens. The fringe quantitative evaluation was carried out through the four-stepping technique and the resulting phase map and the Branch-cut method was employed for phase unwrapping. The only non-optical procedure for lens characterization was the thickness measurement, made by a dial caliper. Exact ray tracing calculation was performed in order to establish a relation between the output wavefront geometry and the lens parameters like radii of curvature, thickness and refractive index. By quantitatively comparing the theoretical wavefront geometry with the experimental results relative uncertainties bellow 3% for refractive index and 1 % for focal length were obtained. © 2008 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The synergistic effect produced by metallic nanoparticles when incorporated into different systems empowers a research field that is growing rapidly. In addition, organometallic materials are at the center of intensive research with diverse applications such as light-emitting devices, transistors, solar cells, and sensors. The Langmuir-Blodgett (LB) technique has proven to be suitable to address challenges inherent to organic devices, since the film properties can be tuned at the molecular level. Here we report a strategy to incorporate gold nanoparticles (AuNPs) into the LB film by co-deposition in order to achieve surface-enhanced Raman scattering (SERS) of the zinc(II)-protoporphyrin (IX) dimethyl ester (ZnPPIX-DME). Prior to the LB co-deposition, the properties of the Langmuir monolayer of ZnPPIX-DME at the air-water interface, containing AuNPs in the subphase, are studied through the surface-pressure versus mean molecular area (π-A) isotherms. The ZnPPIX-DME+AuNPs π-A isotherm presented a significant shift to higher molecular area, suggesting an interaction between both ZnPPIX-DME molecules and AuNPs. Those interactions are a key factor allowing the co-deposition of both AuNPs and ZnPPIX-DME molecules onto a solid substrate, thus forming the LB film. SERS of ZnPPIX-DME was successfully attained, ensuring the spatial distribution of the AuNPs. Higher enhancement factors were found at AuNP aggregates, as a result of the intense local electromagnetic field found in the metal nanoparticle aggregates. The main vibrational bands observed in the SERS spectra suggest a physical adsorption of the ZnPPIX-DME onto the surface of AuNPs. The latter is not only in agreement with the interactions pointed out by the π-A isotherms but also suggests that this interaction is kept upon LB film co-deposition.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of this study was to evaluate the possibility to obtaining guided bone regeneration utilizing a nonporous PTFE barrier in the osseointegrated implants, protruding from the bone level of the rabbit tíbia. The histologic characteristics of the interface between titanium implants, one group titanium-plasma coated, another group with acid-treated surfaces and the regenerated bone were also studied Twenty Screw-Vent implants were placed in tibias of five rabbits, two at the right side and two at the left side, protruding 3 mm from the bone level, to create a horizontal bone defect. ln the experimental side, the implants and adjacent bone were protected with a nonporous PTFE barrier. Histologic analysis after three months showed that all implants were in direct contact with the bane. Histologic measurements showed an average gain in bone height of the 2.15 and 2.42 mm for the barrier group and 1.95 and 0.43 mm for the control defects, in the titanium plasma-spray and acid-treated implant surfaces, respectively. The results suggest that the placement of implants protruding 3 mm from crestal bone defects may result in vertical bone augmentation and the regenerated bone is able to osseointegrate implants. lt seems to be critical the use of the PTFE barrier when acid-treated surface implants are inserted