965 resultados para vertical drains
Resumo:
The bigeye thresher shark (Alopias superciliosus, Lowe 1841) is one of three sharks in the family Alopiidae, which occupy pelagic, neritic, and shallow coastal waters throughout the altropics and subtropics (Gruber and Compagno, 1981; Castro, 1983). All thresher sharks possess an elongated upper caudal lobe, and the bigeye thresher shark is distinguished from the other alopiid sharks by its large upward-looking eyes and grooves on the top of the head (Bigelow and Schroeder, 1948). Our present understanding of the bigeye thresher shark is primarily based upon data derived from specimens captured in fisheries, including knowledge of its morphological features (Fitch and Craig, 1964; Stillwell and Casey, 1976; Thorpe, 1997), geographic range as far as it overlaps with fisheries (Springer, 1943; Fitch and Craig, 1964; Stillwell and Casey, 1976; Gruber and Compagno, 1981; Thorpe, 1997), age, growth and maturity (Chen et al., 1997; Liu et al., 1998), and aspects of its reproductive biology (Gilmore, 1983; Moreno and Moron, 1992; Chen et al., 1997).
Resumo:
We employed ultrasonic transmitters to follow (for up to 48 h) the horizontal and vertical movements of five juvenile (6.8–18.7 kg estimated body mass) bluefin tuna (Thunnus thynnus) in the western North Atlantic (off the eastern shore of Virginia). Our objective was to document the fishes’ behavior and distribution in relation to oceanographic conditions and thus begin to address issues that currently limit population assessments based on aerial surveys. Estimation of the trends in adult and juvenile Atlantic bluefin tuna abundance by aerial surveys, and other fishery-independent measures, is considered a priority. Juvenile bluefin tuna spent the majority of their time over the continental shelf in relatively shallow water (generally less then 40 m deep). Fish used the entire water column in spite of relatively steep vertical thermal gradients (≈24°C at the surface and ≈12°C at 40 m depth), but spent the majority of their time (≈90%) above 15 m and in water warmer then 20°C. Mean swimming speeds ranged from 2.8 to 3.3 knots, and total distance covered from 152 to 289 km (82–156 nmi). Because fish generally remained within relatively con-fined areas, net displacement was only 7.7–52.7 km (4.1–28.4 nmi). Horizontal movements were not correlated with sea surface temperature. We propose that it is unlikely that juvenile bluefin tuna in this area can detect minor horizontal temperature gradients (generally less then 0.5°C/km) because of the steep vertical temperature gradients (up to ≈0.6°C/m) they experience during their regular vertical movements. In contrast, water clarity did appear to influence behavior because the fish remained in the intermediate water mass between the turbid and phytoplankton-rich plume exiting Chesapeake Bay (and similar coastal waters) and the clear oligotrophic water east of the continental shelf.
Resumo:
The vertical and horizontal movements of southern bluefin tuna (SBT), Thunnus maccoyii, in the Great Australian Bight were investigated by ultrasonic telemetry. Between 1992 and 1994, sixteen tuna were tracked for up to 49 h with depth or combined temperature-depth transmitting tags. The average swimming speeds (measured over the ground) over entire tracks ranged from 0.5 to 1.4 m/s or 0.5 to 1.4 body lengths/s. The highest sustained swimming speed recorded was 2.5 m/s for 18 hours. Horizontal movements were often associated with topographical features such as lumps, reefs, islands and the shelf break. They spent long periods of time at the surface during the day (nearly 30%), which would facilitate abundance estimation by aerial survey. At night, they tended to remain just below the surface, but many remained in the upper 10 m throughout the night. SBT were often observed at the thermocline interface or at the surface while travelling. A characteristic feature of many tracks was sudden dives before dawn and after sunset during twilight, followed by a gradual return to their original depth. It is suggested that this is a behavior evolved to locate the scattering layer and its associated prey when SBT are in waters of sufficient depth. SBT maintained a difference between stomach and ambient temperature of up to 9°C.