999 resultados para variational characterisation
Resumo:
Copper dodecanoate films prepared by emulsion method exhibit superhydrophobic property with water contact angle of 155 degrees and sliding angle of <2 degrees. The films have been characterised by using X-ray diffraction, field emission scanning electron microscopy and Fourier transform infrared spectroscopy techniques. Surface microstructure of copper dodecanoate consists of numerous microscale papillas of about 6-12 mu m in length with a diameter in the range of 360-700 nm. The superhydrophobicity of the films is due to their dual micronano surface morphology. The wetting behaviour of the film surface was studied by a simple water immersion test. The results show that copper dodecanoate film retained superhydrophobic property even after immersing in water for about 140 h. The optical absorption spectrum exhibits two broadbands centred at 388 and 630 nm that have been assigned to B-2(1g) -> E-2(g) and B-2(1g) -> B-2(2g) transitions of Cu2+ ions, respectively. The electron paramagnetic resonance spectrum exhibits two resonance signals with effective g values at g(parallel to)approximate to 2.308 and g(perpendicular to) approximate to 2.071, which suggests that the unpaired electron occupies d(x2-y2) orbital in the ground state. Copyright (C) 2011 John Wiley & Sons, Ltd.
Resumo:
This work focuses on the formulation of an asymptotically correct theory for symmetric composite honeycomb sandwich plate structures. In these panels, transverse stresses tremendously influence design. The conventional 2-D finite elements cannot predict the thickness-wise distributions of transverse shear or normal stresses and 3-D displacements. Unfortunately, the use of the more accurate three-dimensional finite elements is computationally prohibitive. The development of the present theory is based on the Variational Asymptotic Method (VAM). Its unique features are the identification and utilization of additional small parameters associated with the anisotropy and non-homogeneity of composite sandwich plate structures. These parameters are ratios of smallness of the thickness of both facial layers to that of the core and smallness of 3-D stiffness coefficients of the core to that of the face sheets. Finally, anisotropy in the core and face sheets is addressed by the small parameters within the 3-D stiffness matrices. Numerical results are illustrated for several sample problems. The 3-D responses recovered using VAM-based model are obtained in a much more computationally efficient manner than, and are in agreement with, those of available 3-D elasticity solutions and 3-D FE solutions of MSC NASTRAN. (c) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Metal-ion- (Ag, Co, Ni and Pd) doped titania nanocatalysts were successfully deposited on glass slides by layer-by-layer (LbL) self-assembly technique using a poly(styrene sulfonate sodium salt) (PSS) and poly(allylamine hydrochloride) (PAH) polyelectrolyte system. Solid diffuse reflectance (SDR) studies showed a linear increase in absorbance at 416 nm with increase in the number of m-TiO2 thin films. The LbL assembled thin films were tested for their photocatalytic activity through the degradation of Rhodamine B under visible-light illumination. From the scanning electron microscope (SEM), the thin films had a porous morphology and the atomic force microscope (AFM) studies showed ``rough'' surfaces. The porous and rough surface morphology resulted in high surface areas hence the high photocatalytic degradation (up to 97% over a 6.5 h irradiation period) using visible-light observed. Increasing the number of multilayers deposited on the glass slides resulted in increased film thickness and an increased rate of photodegradation due to increase in the availability of more nanocatalysts (more sites for photodegradation). The LbL assembled thin films had strong adhesion properties which made them highly stable thus displaying the same efficiencies after five (5) reusability cycles.
Resumo:
We develop a continuum theory to model low energy excitations of a generic four-band time reversal invariant electronic system with boundaries. We propose a variational energy functional for the wavefunctions which allows us to derive natural boundary conditions valid for such systems. Our formulation is particularly suited for developing a continuum theory of the protected edge/surface excitations of topological insulators both in two and three dimensions. By a detailed comparison of our analytical formulation with tight binding calculations of ribbons of topological insulators modelled by the Bernevig-Hughes-Zhang (BHZ) Hamiltonian, we show that the continuum theory with a natural boundary condition provides an appropriate description of the low energy physics.
Resumo:
The role of FIC (Filamentation induced by cAMP)(2) domain containing proteins in the regulation of many vital pathways, mostly through the transfer of NMPs from NTPs to specific target proteins (NMPylation), in microorganisms, higher eukaryotes, and plants is emerging. The identity and function of FIC domain containing protein of the human pathogen, Mycobacterium tuberculosis, remains unknown. In this regard, M. tuberculosis fic gene (Mtfic) was cloned, overexpressed, and purified to homogeneity for its biochemical characterisation. It has the characteristic FIC motif, HPFREGNGRSTR (HPFxxGNGRxxR), spanning 144th to 155th residue. Neither the His-tagged nor the GST-tagged MtFic protein, overexpressed in Escherichia coil, nor expression of Mtfic in Mycobacterium smegmatis, yielded the protein in the soluble fraction. However, the maltose binding protein (MBP) tagged MtFic (MBP-MtFic) could be obtained partly in the soluble fraction. The cloned, overexpressed, and purified recombinant MBP-MtFic showed conversion of ATP, GTP, CTP, and UTP into AMP. GMP, CMP, and UMP, respectively. Sequence alignment with several FIC motif containing proteins, complemented with homology modeling on the FIC motif containing protein, VbhT of Bartonella schoenbuchensis as the template, showed conservation and interaction of residues constituting the FIC domain. Site-specific mutagenesis of the His144, or Glu148, or Asn150 of the FIC motif, or of Arg87 residue that constitutes the FIC domain, or complete deletion of the FIC motif, abolished the NTP to NMP conversion activity. The design of NMP formation assay using the recombinant, soluble MtFic would enable identification of its target substrate for NMPylation. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
The polyaniline-PbO composites of various mass fractions were prepared by in situ polymerisation. The prepared samples were characterised by FTIR, and the dominant peaks confirmed the formation of polyaniline-PbO composites. The SEM study shows a granular agglomerated morphology, and increases with an increase in the lead oxide mass % in polyaniline. Direct current (DC) conductivity (sigma (DC)) was studied as a function of temperature (T). From these studies, it was found that conductivity increased at higher temperatures due to the polarons hopping from one localised state to another. DSC studies reveal, the decrease in peak temperature from 273A degrees C (pure PANI) to 169.2A degrees C, 193.5A degrees C, 218.4A degrees C, 235.2A degrees C, and 224.2A degrees C, respectively for the various mass fractions (10 %, 30 %, 20 %, 40 %, and 50 %) of polyaniline-PbO composites.
Resumo:
Microwave-assisted synthesis of novel alkoxycyanobiphenyl-substituted rufigallols are reported by systematically replacing one, two, four, five or six cyanobiphenyl-tethered alkoxy chains. The synthesis of the target compounds was challenging since classical reactions failed to produce these hybrids. Chemical structures of the hybrids were determined by H-1 nuclear magnetic resonance (NMR), C-13 NMR, infrared, ultraviolet spectroscopy and elemental analysis. The thermotropic liquid crystalline properties of the new compounds were investigated by polarising optical microscopy, differential scanning calorimetry and X-ray diffractometry.
Resumo:
A composite electrode made up of exfoliated graphite (EG) and diamond was prepared for the electrochemical oxidation of trichloroethylene (TCE). The SEM images of the EG-diamond material showed that diamond powders were dispersed on the surface of EG materials. The N-2 adsorption-desorption isotherm of EG-diamond material resulted in a poor adsorption capability due to the insertion of diamond powders into the porous matrix of EG. Raman spectroscopy revealed the presence of characteristic sp(3) bands of diamond confirming good interaction of diamond with EG. Electrochemical characterisation of EG-diamond in 0.1 M Na2SO4 resulted in an enhanced working potential window. The EG-diamond electrode was employed for the electrochemical oxidation of trichloroethylene (0.2 mM) in a Na2SO4 supporting electrolyte. The EG-diamond, in comparison to the pristine EG electrode, exhibited a higher removal efficiency of 94% (EG was 57%) and faster degradation kinetics of 25.3 x 10(-3) min(-1) showing pseudo first order kinetic behaviour. Under the optimised conditions, 73% total organic content (TOC) removal was achieved after 4 h of electrolysis. The degradation of TCE was also monitored with gas chromatography-mass spectrometry. Dichloroacetic acid (DCAA) was identified as a major intermediate product during the electrochemical oxidation of TCE. The electrochemical degradation of TCE at the EG-diamond electrode represents a cost effective method due to the ease of preparation of EG-diamond composite material without the necessity of diamond activation which is normally achieved through doping.
Resumo:
Bioactive compounds comprising secondary metabolites produced by endophytic fungi have wide applications in pharmacology and agriculture. Isolation, characterisation and evaluation of biological activities of secondary metabolites were carried out from Cochliobolus kusanoi an endophytic fungus of Nerium oleander L. The fungus was identified based on 18S rDNA sequence analysis. There are no reports available on the compounds of C. kusanoi hence, antimicrobial metabolite produced by this fungus was extracted and purified by fractionation using hexane, diethyl ether, dichloromethane, ethyl acetate and methanol. Out of all the solvent fractions, the methanol fraction exhibited better antimicrobial activity which was further purified and characterised as oosporein. Oosporein from C. kusanoi exhibited broad spectrum in vitro antimicrobial, antioxidant and cytotoxic activities. The characterisation and antioxidant activity of oosporein from C. kusanoi are reported for the first time.
Resumo:
An asymptotically-exact methodology is presented for obtaining the cross-sectional stiffness matrix of a pre-twisted moderately-thick beam having rectangular cross sections and made of transversely isotropic materials. The anisotropic beam is modeled from 3-D elasticity, without any further assumptions. The beam is allowed to have large displacements and rotations, but small strain is assumed. The strain energy of the beam is computed making use of the constitutive law and the kinematical relations derived with the inclusion of geometrical nonlinearities and initial twist. Large displacements and rotations are allowed, but small strain is assumed. The Variational Asymptotic Method is used to minimize the energy functional, thereby reducing the cross section to a point on the reference line with appropriate properties, yielding a 1-D constitutive law. In this method as applied herein, the 2-D cross-sectional analysis is performed asymptotically by taking advantage of a material small parameter and two geometric small parameters. 3-D strain components are derived using kinematics and arranged as orders of the small parameters. Warping functions are obtained by the minimization of strain energy subject to certain set of constraints that renders the 1-D strain measures well-defined. Closed-form expressions are derived for the 3-D non-linear warping and stress fields. The model is capable of predicting interlaminar and transverse shear stresses accurately up to first order.
Resumo:
This work deals with the homogenization of an initial- and boundary-value problem for the doubly-nonlinear system D(t)w - del.(z) over right arrow = g(x, t, x/epsilon) (0.1) w is an element of alpha(u, x/epsilon) (0.2) (z) over right arrow is an element of (gamma) over right arrow (del u, x/epsilon) (0.3) Here epsilon is a positive parameter; alpha and (gamma) over right arrow are maximal monotone with respect to the first variable and periodic with respect to the second one. The inclusions (0.2) and (0.3) are here formulated as null-minimization principles, via the theory of Fitzpatrick MR 1009594]. As epsilon -> 0, a two-scale formulation is derived via Nguetseng's notion of two-scale convergence, and a (single-scale) homogenized problem is then retrieved. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
This work deals with the homogenization of an initial- and boundary-value problem for the doubly-nonlinear system D(t)w - del.(z) over right arrow = g(x, t, x/epsilon) (0.1) w is an element of alpha(u, x/epsilon) (0.2) (z) over right arrow is an element of (gamma) over right arrow (del u, x/epsilon) (0.3) Here epsilon is a positive parameter; alpha and (gamma) over right arrow are maximal monotone with respect to the first variable and periodic with respect to the second one. The inclusions (0.2) and (0.3) are here formulated as null-minimization principles, via the theory of Fitzpatrick MR 1009594]. As epsilon -> 0, a two-scale formulation is derived via Nguetseng's notion of two-scale convergence, and a (single-scale) homogenized problem is then retrieved. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
This work presents the development of piezocomposites made up of Macro Fiber Composites (MFCs) for aerospace applications and specifically involves, their computational analysis, material characterization and certain parametric studies. MFC was developed by NASA Langley Research Center in 1996 and currently is being distributed by Smart Material Co. 1] worldwide and finds applications both as an actuator as well as for sensor in various engineering applications. In this work, MFC is being modeled as an actuator and a theoretical formulation based on Variational Asymptotic Method (VAM) 2] is presented to analyse the laminates made up of MFCs. VAM minimizes the total electro-mechanical energy for the MFC laminate and approaches the exact solution asymptotically by making use of certain small parameters inherent to the problem through dimensional reduction. VAM provides closed form solutions for 1D constitutive law, recovery relations of warpings, 3D stress/strain fields and displacements and hence an ideal tool for carrying out parametric and design studies in such applications. VAM is geometrically exact and offers rigorous material characterization through cross-sectional analysis and dimensional reduction.