949 resultados para unfolded protein response
Resumo:
The cellular prion protein (PrPC) is a neuronal anchored glycoprotein that has been associated with distinct functions in the CNS, such as cellular adhesion and differentiation, synaptic plasticity and cognition. Here we investigated the putative involvement of the PrPC in the innate fear-induced behavioural reactions in wild-type (WT), PrPC knockout (Prnp(0/0)) and the PrPC overexpressing Tg-20 mice evoked in a prey versus predator paradigm. The behavioural performance of these mouse strains in olfactory discrimination tasks was also investigated. When confronted with coral snakes, mice from both Prnp(0/0) and Tg-20 strains presented a significant decrease in frequency and duration of defensive attention and risk assessment, compared to WT mice. Tg-20 mice presented decreased frequency of escape responses, increased exploratory behaviour, and enhancement of interaction with the snake, suggesting a robust fearlessness caused by PrPC overexpression. Interestingly, there was also a discrete decrease in the attentional defensive response (decreased frequency of defensive alertness) in Prnp(0/0) mice in the presence of coral snakes. Moreover, Tg-20 mice presented an increased exploration of novel environment and odors. The present findings indicate that the PrPC overexpression causes hyperactivity, fearlessness, and increased preference for visual, tactile and olfactory stimuli-associated novelty, and that the PrPC deficiency might lead to attention deficits. These results suggest that PrPC exerts an important role in the modulation of innate fear and novelty-induced exploration. (C) 2008 Published by Elsevier B.V.
Resumo:
Chemoreflex afferent fibers terminate in the nucleus tractus solitarii (NTS), but the specific location of the NTS neurons excited by peripheral chemoreflex activation remains to be characterized. Here, the topographic distribution of chemoreflex sensitive cells at the commissural NTS was evaluated. To reach this goal, Fos-immunoreactive neurons (Fos-ir) were accounted in rostro-caudal levels of the intermediate and caudal commissural NTS, after intermittent chemoreflex activation with intravenous injection of potassium cyanide [KCN (80 mu g/kg) or saline (0.9%, vehicle), one injection every 3 min during 30 min]. In response to intermittent intravenous injections of KCN, a significant increase in the number of Fos-ir neurons was observed specifically in the lateral intermediate commissural NTS [(LI)NTS (82 +/- 9 vs. 174 +/- 16, cell number mean per section)] and lateral caudal commissural NTS [(LI)NTS (71 +/- 9 vs. 199 +/- 18, cell number mean per section)]. To evaluate the influence of baroreceptor-mediated inputs following the increase in blood pressure during intermittent chemoreflex activation, we performed an intermittent activation of the arterial baroreflex by intravenous injection of phenylephrine [1.5 mu g/kg iv (one injection every 3 min during 30 min)]. This procedure induced no change in Fos-ir in (LI)NTS (64 +/- 6 vs. 62 +/- 12, cell number mean per section) or (LC)NTS (56 +/- 15 vs. 77 +/- 12, cell number mean per section). These data support the involvement of the commissural NTS in the processing of peripheral chemoreflex, and provide a detailed characterization of the topographical distribution of activated neurons within this brain region. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The identification of early markers that predict the response to anti-tuberculosis treatment would facilitate evaluation of new drugs and improve patient management. This study aimed to determine whether selected acute phase proteins and micronutrients measured at the time of diagnosis and during the first weeks of treatment could predict treatment responses during the 2-month standard intensive phase of therapy. For this purpose, alpha 1-antitrypsin, alpha 1-acid gtycoprotein, alpha 2-macroglobutin, C-reactive protein, C3, C4, zinc, copper and selenium concentrations were measured in Brazilian patients with smear-positive tuberculosis at the time of diagnosis and 1, 3, 5 and 8 weeks after initiation of therapy. Patients were classified into fast (n = 29), intermediate (n = 18) and slow responders (n = 10) if they were smear-negative at 3, 5 or 8 weeks of treatment. alpha 1-acid gtycoprotein on enrolment and 1 week of treatment, alpha 1-antitrypsin at week 1 and C-reactive protein and C3 after 3 weeks of therapy were higher in slow responders than in fast responders. alpha 1-antitrypsin and alpha 1-acid glycoprotein may be helpful in predicting treatment response at the time of initiation of therapy, and could be used as early markers to identify patients with an increased likelihood of treatment failure. (C) 2008 Royal Society of Tropical Medicine and Hygiene. Published by Elsevier Ltd. All rights reserved.
Resumo:
Aicardi-Goutieres syndrome is a mendelian mimic of congenital infection and also shows overlap with systemic lupus erythematosus at both a clinical and biochemical level. The recent identification of mutations in TREX1 and genes encoding the RNASEH2 complex and studies of the function of TREX1 in DNA metabolism have defined a previously unknown mechanism for the initiation of autoimmunity by interferon-stimulatory nucleic acid. Here we describe mutations in SAMHD1 as the cause of AGS at the AGS5 locus and present data to show that SAMHD1 may act as a negative regulator of the cell-intrinsic antiviral response.
Resumo:
A DNA vaccine expressing dengue-4 virus premembrane (prM) and envelope (E) genes was produced by inserting these genes into a mammalian expression plasmid (pCI). Following a thorough screening, including confirmation of protein expression in vitro, a recombinant clone expressing these genes was selected and used to immunize BALB/c mice. After 3 immunizations all the animals produced detectable levels of neutralizing antibodies against dengue-4 virus. The cytokines levels and T cell proliferation, detected ex vivo from the spleen of the immunized mice, showed that our construction induced substantial immune stimulation after three doses. Even though the antibody levels, induced by our DNA vaccine, were lower than those obtained in mice immunized with dengue-4 virus the levels of protection were high with this vaccine. This observation is further supported by the fact that 80% of the vaccine immunized group was protected against lethal challenge. In conclusion, we developed a DNA vaccine employing the genes of the prM and E proteins from dengue-4 virus that protects mice against this virus. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Background. Defects in apoptosis signaling have been considered to be responsible for treatment failure in many types of cancer, although with controversial results. The objective of the present study was to assess the expression profile of key apoptosis-related genes in terms of clinical and biological variables and of the survival of children with acute lymphoblastic leukemia (ALL). Procedure. The levels of mRNA expression of the apoptosis-related genes CASP3, CASP8, CASP9, FAS, and BCL2 were analyzed by quantitative real-time PCR in consecutive samples from 139 consecutive children with ALL at diagnosis treated by the Brazilian protocol (GBTLI-ALL 99). Gene expression levels and clinical and biological features were compared by the Mann-Whitney test. Event-free survival (EFS) was calculated by Kaplan-Meier plots and log-rank test. Results. A significant correlation was detected between CASP3, CASP8, CASP9, and FAS expression levels (P<0.01) in ALL samples. Higher levels of BCL2 were significantly associated with white blood cell (WBC) count <50,000/mm(3) at diagnosis (P=0.01) and low risk group classification (P=0.008). Lower expression levels of CASP3, CASP8 and FAS gene were associated with a poor response at day 7 according the GBTLI-ALL 99 protocol (P=0.03, P=0.02 and P=0.008, respectively). There was a relationship between FAS gene expression lower than the 75th percentile and lower 5-year EFS (P=0.02). Conclusion. These findings suggest an association between lower expression levels of the pro-apoptotic genes and a poor response to induction therapy at day 7 and prognosis in childhood ALL. Pediatr Blood Cancer 2010;55:100-107. (C) 2010 Wiley-Liss, Inc.
Resumo:
Objective: Low molecular weight protein tyrosine phosphatases (LMW-PTPs) are a family of enzymes strongly involved in the regulation of cell growth and differentiation. Since there is no information concerning the relationship between osteoblastic differentiation and LMW-PTP expression/activity, we investigated its involvement during human osteoblast-like cells (hFOB 1.19) differentiation. It is known that LMW-PTP is regulated by an elegant redox mechanism, so we also observed how the osteoblastic differentiation affected the reduced glutathione levels. Design: hFOB 1.19 cells were cultured in DMEM/F12 up to 35 days. The osteoblast phenotype acquisition was monitored by measuring alkaline phosphatase activity and mineralized nodule formation by Von Kossa staining. LMW-PTP activity and expression were measured using the p-nitrophenylphosphate as substrate and Western blotting respectively. Crystal violet assay determined the cell number in each experimental point. Glutathione level was determined by both HPLC and DNTB assays. Results: LMW-PTP modulation was coincident with the osteoblastic differentiation biomarkers, such as alkaline phosphatase activity and presence of nodules of mineralization in Vitro. Likewise LMW-PTP, the reduced glutathione-dependent microenvironment was modulated during osteoblastic differentiation. During this process, LMW-PTP expression/activity, as well as alkaline phosphatase and glutathione increased progressively up to the 21st day (p < 0.001) of culturing, decreasing thereafter. Conclusions: Our results clearly suggest that LMW-PTP expression/activity was rigorously modulated during osteoblastic differentiation, possibly in response to the redox status of the cells, since it seems to depend on suitable levels of reduced glutathione. in this way, we pointed out LMW-PTP as an important signaling molecule in osteoblast biology and bone formation. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
This study investigated the response of human alveolar bone-derived cells to a novel poly(vinylidene fluoride-trifluoroethylene)/barium titanate (P(VDF-TrFE)/BT) membrane. Osteoblastic cells were cultured in osteogenic conditions either on P(VDF-TrFE)/BT or polytetrafluoroethylene (PTFE) for up to 14 days. At 7 and 14 days, the mRNA expression of Runt-related transcription factor 2 (RUNX2), Type I collagen (COL I), Osteopontin (OPN), Alkaline phosphatase (ALP), Bone sialoprotein (BSP), and Osteocalcin (OC), key markers of the osteoblastic phenotype, and of Bcl2-associated X protein (Bax), B-cell CLL/lymphoma 2 (Bcl-2), and Survivin (SUR), associated with the control of the apoptotic cell death, was assayed by real-time PCR. In situ ALP activity was qualitatively evaluated by means of Fast red staining. Surface characterization was also qualitatively and quantitatively assayed in terms of topography, roughness, and wettability. Cells grown on P(VDF-TrFE)/BT exhibited a significantly higher mRNA expression for all markers compared to the ones on PTFE, except for Bcl-2, which was not detected for both groups. Additionally, Fast red staining was noticeably stronger in cultures on P(VDF-TrFE)/BT at 7 and 14 days. At micron-and submicron scale, SEM images and roughness analysis revealed that PTFE and P(VDF-TrFE)/BT exhibited a smooth topography and a similar roughness, respectively. PTFE membrane displayed higher contact angles compared with P(VDF-TrFE)/BT, as indicated by wettability assay. The novel P(VDF-TrFE)/BT membrane supports the acquisition of the osteoblastic phenotype in vitro, while up-regulating the expression of apoptotic markers. Further in vivo experiments should be carried out to confirm the capacity of P(VDF-TrFE)/BT membrane in promoting bone formation in guided bone regeneration.
Resumo:
The aim of the present study was to evaluate the in vitro osteogenic potential of subcultured human osteoblastic cells derived from alveolar bone on a titanium (Ti) surface produced by an anodized alkali treatment (BSP-AK). Primary osteoblastic cells were subcultured on BSP-AK and machined Ti discs (control) and grown for periods of up to 21 days under osteogenic conditions. Morphologic and biochemical methods were used to assess important parameters of in vitro bone-like tissue formation. Although no major differences were observed between the BSP-AK and the control Ti surface in terms of cell attachment and mineralized matrix formation, a significant increase in cell population, ALP activity, and collagen content was detected in cultures on BSP-AK surface. Our results demonstrate that human osteoblastic cells are sensitive to the BSP-AK-modified Ti surface during the transitional stage between the end of the proliferative phase and the onset of the differentiation /matrix maturation ones. Together with the good mechanical properties exhibited by the Ca- and P- coating, our findings suggest that BSP-AK treatment could be useful for the development of a new surface for dental and orthopedic implants. (c) 2008 Wiley Periodicals, Inc.J Biomed Mater Res 88A: 841-848, 2009
Resumo:
Despite wide clinical application, the efficacy of platelet-rich plasma (PRP) for repairing bone defects and enhancing osseointegration of metal implants is still subject of debate. This study aimed to evaluate the effects of a well-defined PRP-like mixture containing platelet-derived growth factor-BB, transforming growth factor (TGF)-beta 1, TGF-beta 2, albumin, fibronectin, and thrombospondin [growth factors (GFs) + proteins] on the development of the osteogenic phenotype on titanium (Ti) in vitro. Human alveolar bone-derived osteoblastic cells were subcultured on Ti discs and exposed during the first 7 days to osteogenic medium supplemented with GFs + proteins and to osteogenic medium alone thereafter up to 14 days. Control cultures were exposed to only osteogenic medium. Dose-response experiments were carried out using rat primary calvarial cells exposed to GFs + proteins and 1:10 or 1:100 dilutions of the mixture. Treated human-derived cell cultures exhibited a significantly higher number of cycling cells at days 1 and 4 and of total cells at days 4 and 7, significantly reduced alkaline phosphatase (ALP) activity at days 4, 7, and 10, and no Alizarin red-stained areas (calcium deposits) at day 14, indicating an impairment in osteoblast differentiation. Although the 1:10 and 1:100 dilutions of the mixture restored the proliferative activity of rat-derived osteogenic cells to control levels and promoted a significant increase in ALP activity at day 10 compared with GFs + proteins, mineralized nodule formation was only observed with the 1:100 dilution (similar to 50% of the control). These results showed that a PRP-like protein mixture inhibits development of the osteogenic phenotype in both human and rat osteoblastic cell cultures grown on Ti. (J Histochem Cytochem 57:265-276, 2009)
Resumo:
Central heme oxigenase-carbon monoxide (HO-CO) pathway has been shown to play a pyretic role in the thermoregulatory response to restraint. However, the specific site in the central nervous system where CO may act modulating this response remains unclear. LC is rich not only in sGC but also in heme oxygenase (HO; the enzyme that catalyses the metabolism of heme to CO, along with biliverdin and free iron). Therefore, the possible role of the HO-CO-cGMP pathway in the restraint-induced-hypothermia by LC neurons was investigated. Body temperature dropped about 0.7 degrees C during restraint. ZnDPBG (a HO inhibitor; 5 nmol, intra-LC) prevented the hypothermic response during restraint. Conversely, induction of the HO pathway in the LC with heme-lysinate (7.6 nmol, intra-LC) intensified the hypothermic response to restraint, and this effect was prevented by pretreatment with ODQ (a sGC inhibitor; given intracerebroventricularly, 1.3 nmol). Taken together, these data suggest that CO in the LC produced by the HO pathway and acting via cGMP is implicated in thermal responses to restraint. (C) 2007 Elsevier Inc. All rights reserved.
Resumo:
Circulating GH consists of multiple molecular isoforms, all derived from the one gene in nonpregnant humans. To assess the effect of a potent stimulus to pituitary secretion on GH isoforms, we studied 17 aerobically trained males (age, 26.9 +/- 1.5 yr) in a randomized, repeat measures study of rest vs. exercise. Exercise consisted of continuous cycle ergometry at approximately 80% of predetermined maximal oxygen uptake for 20 min. Serum was assayed for total, pituitary, 22-kDa, recombinant, non-22-kDa, 20-kDa, and immunofunctional GH. All isoforms increased during, peaked at the end, and declined after exercise. At peak exercise, 22-kDa GH was the predominant isoform. After exercise, the ratios of non-22 kDa/total GH and 20-kDa GH/total GH increased and those of recombinant/pituitary GH decreased. The disappearance half-times for pituitary GH and 20-kDa GH were significantly longer than those for all other isoforms. We conclude that 1) all molecular isoforms of GH measured increased with and peaked at the end of acute exercise, with 22-kBa GH constituting the major isoform in serum during exercise; and 2) the proportion of non-22-kDa isoforms increased after exercise due in part to slower disappearance rates of 20-kDa and perhaps other non-22-kDa GH isoforms. It remains to be determined whether the various biological actions of different GH isoforms impact on postexercise homeostasis.
Resumo:
Epidermal growth factor (EGF) has been reported to either sensitize or protect cells against ionizing radiation. We report here that EGF increases radiosensitivity in both human fibroblasts and lymphoblasts and down-regulates both ATM (mutated in ataxia-telangiectasia (A-T)) and the catalytic subunit of DNA-dependent protein kinase (DNA-PKcs). No further radiosensitization was observed in A-T cells after pretreatment with EGF. The down-regulation of ATM occurs at the transcriptional level. Concomitant with the down-regulation of ATM, the DNA binding activity of the transcription factor Sp1 decreased. A causal relationship was established between these observations by demonstrating that up-regulation of Sp1 DNA binding activity by granulocyte/macrophage colony-stimulating factor rapidly reversed the EGF-induced decrease in ATM protein and restored radiosensitivity to normal levels. Failure to radiosensitize EGF-treated cells to the same extent as observed for A-T cells can be explained by induction of ATM protein and kinase activity with time post-irradiation. Although ionizing radiation damage to DNA rapidly activates ATM kinase and cell cycle checkpoints, we have provided evidence for the first time that alteration in the amount of ATM protein occurs in response to both EGF and radiation exposure. Taken together these data support complex control of ATM function that has important repercussions for targeting ATM to improve radiotherapeutic benefit.
Resumo:
Exposure to DNA-damaging agents triggers signal transduction pathways that are thought to play a role in maintenance of genomic stability. A key protein in the cellular processes of nucleotide excision repair, DNA recombination, and DNA double-strand break repair is the single-stranded DNA binding protein, RPA. We showed previously that the p34 subunit of RPA becomes hyperphosphorylated as a delayed response (4-8 h) to UV radiation (10-30 J/m(2)). Here we show that UV-induced RPA-p34 hyperphosphorylation depends on expression of ATM, the product of the gene mutated in the human genetic disorder ataxia telangiectasia (A-T). UV-induced RPA-p34 hyperphosphorylation was not observed in A-T cells, but this response was restored by ATM expression. Furthermore, purified ATM kinase phosphorylates the p34 subunit of RPA complex in vitro at many of the same sites that are phosphorylated in vivo after UV radiation. Induction of this DNA damage response was also dependent on DNA replication; inhibition of DNA replication by aphidicolin prevented induction of RPA-p34 hyperphosphorylation by UV radiation. We postulate that this pathway is triggered by the accumulation of aberrant DNA replication intermediates, resulting from DNA replication fork blockage by UV photoproducts. Further, we suggest that RPA-p34 is hyperphosphorylated as a participant in the recombinational postreplication repair of these replication products. Successful resolution of these replication intermediates reduces the accumulation of chromosomal aberrations that would otherwise occur as a consequence of UV radiation.
Resumo:
Epidermal growth factor (EGF) has been reported to either sensitize or protect cells against ionizing radiation. We report here that EGF increases radiosensitivity in both human fibroblasts and lymphoblasts and downregulates both ATM (mutated in ataxia-telangiectasia (A-T)) and the catalytic subunit of DNA-dependent protein kinase (DNA-PKcs). No further radiosensitization was observed in A-T cells after pretreatment with EGF. The down-regulation of ATM occurs at the transcriptional level. Concomitant with the down-regulation of ATM, the DNA binding activity of the transcription factor Spl decreased. A causal relationship was established between these:observations by demonstrating that upregulation of Spl DNA binding activity by granulocyte/ macrophage colony-stimulating factor rapidly reversed the EGF-induced decrease in ATM protein and restored radiosensitivity to normal levels. Failure to radiosensitize EGF-treated cells to the same extent as observed for A-T cells ban be explained by induction of ATM protein and kinase activity with time post-irradiation, Although ionizing radiation damage to DNA rapidly activates ATM kinase and cell cycle checkpoints, we have provided evidence for the first time that alteration in the amount of ATM protein occurs in response to both EGF and radiation exposure. Taken together these data support complex control of ATM function that has important repercussions for targeting ATM to improve radiotherapeutic benefit.