938 resultados para tropical species


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Among squamate reptiles, lizards exhibit an impressive array of sex-determining modes viz. genotypic sex determination, temperature-dependent sex determination, co-occurrence of both these and those that reproduce parthenogenetically. The oviparous lizard, Calotes versicolor, lacks heteromorphic sex chromosomes and there are no reports on homomorphic chromosomes. Earlier studies on this species presented little evidence to the sex-determining mechanism. Here we provide evidences for the potential role played by incubation temperature that has a significant effect (P<0.01) on gonadal sex and sex ratio. The eggs were incubated at 14 different incubation temperatures. Interestingly, 100% males were produced at low (25.5 +/- 0.5 degrees C) as well as high (34 +/- 0.5 degrees C) incubation temperatures and 100% females were produced at low (23.5 +/- 0.5 degrees C) and high (31.5 +/- 0.5 degrees C) temperatures, clearly indicating the occurrence of TSD in this species. Sex ratios of individual clutches did not vary at any of the critical male-producing or female-producing temperatures within as well as across the seasons. However, clutch sex ratios were female- or male-biased at intermediate temperatures. Thermosensitive period occurred during the embryonic stages 3033. Three pivotal temperatures operate producing 1:1 sex ratio. Histology of gonad and accessory reproductive structures provide additional evidence for TSD. The sex-determining pattern, observed for the first time in this species, that neither compares to Pattern I [Ia (MF) and Ib (FM)] nor to Pattern II (FMF), is being referred to as FMFM pattern of TSD. This novel FMFM pattern of sex ratio exhibited by C. versicolor may have an adaptive significance in maintaining sex ratio. J. Exp. Zool. 317:3246, 2012. (c) 2011 Wiley Periodicals, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Spatial and temporal variation in foliar phenology plays a significant role in growth and reproduction of a plant species. Foliar phenology is strongly influenced by environmental factors such as rainfall. A study on phenology of tropical montane forests was undertaken in three different forest patches of the Nilgiri Mountains in peninsular India above 2000 meters ASL. Since August 2000, 500 trees belonging to 70 species of angiosperms were monitored for both vegetative and reproductive phenologies on a monthly basis. Climate data were collected from nearby weather stations. This paper reports results of the study from August 2000 - August 2003 on foliar phenology. Non-parametric correlations and multiple regressions were performed to analyse the influence of environmental factors such as rainfall, temperature and sunshine on foliar phenology. It was found that moisture related factors had a negative influence on the leaf initiation. Circular statistical analyses were performed to understand the seasonality in different phenophases of foliar phenology. Different phenophases of leafing were not significantly seasonal. Results are discussed and compared among three different forest patches on the Nilgiri plateau and also with other montane forest patches across the globe.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Impact of disturbance on forest stand density, basal area, dbh class distribution of density and basal area, species richness, species diversity and similarity index was assessed through monitoring six, one-hectare, permanent forest plots after a period of 24 years in tropical moist forests of Uttara Kannada district, Western Ghats, India. It was observed that all sites lost trees due to removal by people and mortality. Loss of trees was more in sites that are easily accessible and closer to human habitation. In spite of a decrease in tree density, an increase in basal area was observed in some forest plots, which could be on account of stimulatory growth of surviving trees. Decrease in basal area in other sites indicates greater human pressure and overexploitation of trees. Preponderance of lower girth class trees, and a unimodal reverse `J-shaped' curve of density distribution as observed in majority of the sites in the benchmark year, was indicative of regenerating status of these forests. The decrease in number of species in all forest sites was due to indiscriminate removal of trees by people, without sparing species with only a few individuals, and also due to mortality of trees of rare species. Higher species richness and diversity in the lowest dbh class in most of the sites in the benchmark year is indicative of the existence of favorable conditions for sylvigenesis. The decrease in the similarity index suggests extirpation of species, favoring invasion and colonization by secondary species. To minimize human pressure on forests and to facilitate regeneration and growth, proper management planning and conservation measures are needed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In species-rich assemblages, differential utilization of vertical space can be driven by resource availability. For animals that communicate acoustically over long distances under habitat-induced constraints, access to an effective transmission channel is a valuable resource. The acoustic adaptation hypothesis suggests that habitat acoustics imposes a selective pressure that drives the evolution of both signal structure and choice of calling sites by signalers. This predicts that species-specific signals transmit best in native habitats. In this study, we have tested the hypothesis that vertical stratification of calling heights of acoustically communicating species is driven by acoustic adaptation. This was tested in an assemblage of 12 coexisting species of crickets and katydids in a tropical wet evergreen forest. We carried out transmission experiments using natural calls at different heights from the forest floor to the canopy. We measured signal degradation using 3 different measures: total attenuation, signal-to-noise ratio (SNR), and envelope distortion. Different sets of species supported the hypothesis depending on which attribute of signal degradation was examined. The hypothesis was upheld by 5 species for attenuation and by 3 species each for SNR and envelope distortion. Only 1 species of 12 provided support for the hypothesis by all 3 measures of signal degradation. The results thus provided no overall support for acoustic adaptation as a driver of vertical stratification of coexisting cricket and katydid species.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Niche differentiation has been proposed as an explanation for rarity in species assemblages. To test this hypothesis requires quantifying the ecological similarity of species. This similarity can potentially be estimated by using phylogenetic relatedness. In this study, we predicted that if niche differentiation does explain the co-occurrence of rare and common species, then rare species should contribute greatly to the overall community phylogenetic diversity (PD), abundance will have phylogenetic signal, and common and rare species will be phylogenetically dissimilar. We tested these predictions by developing a novel method that integrates species rank abundance distributions with phylogenetic trees and trend analyses, to examine the relative contribution of individual species to the overall community PD. We then supplement this approach with analyses of phylogenetic signal in abundances and measures of phylogenetic similarity within and between rare and common species groups. We applied this analytical approach to 15 long-term temperate and tropical forest dynamics plots from around the world. We show that the niche differentiation hypothesis is supported in six of the nine gap-dominated forests but is rejected in the six disturbance-dominated and three gap-dominated forests. We also show that the three metrics utilized in this study each provide unique but corroborating information regarding the phylogenetic distribution of rarity in communities.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tropical tree species vary widely in their pattern of spatial dispersion. We focus on how seed predation may modify seed deposition patterns and affect the abundance and dispersion of adult trees in a tropical forest in India. Using plots across a range of seed densities, we examined whether seed predation levels by terrestrial rodents varied across six large-seeded, bird-dispersed tree species. Since inter-specific variation in density-dependent seed mortality may have downstream effects on recruitment and adult tree stages, we determined recruitment patterns close to and away from parent trees, along with adult tree abundance and dispersion patterns. Four species (Canarium resiniferum, Dysoxylum binectariferum, Horsfieldia kingii, and Prunus ceylanica) showed high predation levels (78.5-98.7%) and increased mortality with increasing seed density, while two species, Chisocheton cumingianus and Polyalthia simiarum, showed significantly lower seed predation levels and weak density-dependent mortality. The latter two species also had the highest recruitment near parent trees, with most abundant and aggregated adults. The four species that had high seed mortality had low recruitment under parent trees, were rare, and had more spaced adult tree dispersion. Biotic dispersal may be vital for species that suffer density-dependent mortality factors under parent trees. In tropical forests where large vertebrate seed dispersers but not seed predators are hunted, differences in seed vulnerability to rodent seed predation and density-dependent mortality can affect forest structure and composition.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The rapid disruption of tropical forests probably imperils global biodiversity more than any other contemporary phenomenon(1-3). With deforestation advancing quickly, protected areas are increasingly becoming final refuges for threatened species and natural ecosystem processes. However, many protected areas in the tropics are themselves vulnerable to human encroachment and other environmental stresses(4-9). As pressures mount, it is vital to know whether existing reserves can sustain their biodiversity. A critical constraint in addressing this question has been that data describing a broad array of biodiversity groups have been unavailable for a sufficiently large and representative sample of reserves. Here we present a uniquely comprehensive data set on changes over the past 20 to 30 years in 31 functional groups of species and 21 potential drivers of environmental change, for 60 protected areas stratified across the world's major tropical regions. Our analysis reveals great variation in reserve `health': about half of all reserves have been effective or performed passably, but the rest are experiencing an erosion of biodiversity that is often alarmingly widespread taxonomically and functionally. Habitat disruption, hunting and forest-product exploitation were the strongest predictors of declining reserve health. Crucially, environmental changes immediately outside reserves seemed nearly as important as those inside in determining their ecological fate, with changes inside reserves strongly mirroring those occurring around them. These findings suggest that tropical protected areas are often intimately linked ecologically to their surrounding habitats, and that a failure to stem broad-scale loss and degradation of such habitats could sharply increase the likelihood of serious biodiversity declines.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent work on molecular phylogenetics of Scolopendridae from the Western Ghats, Peninsular India, has suggested the presence of six cryptic species of the otostigmine Digitipes Attems, 1930, together with three species described in previous taxonomic work by Jangi and Dass (1984). Digitipes is the correct generic attribution for a monophyletic group of Indian species, these being united with three species from tropical Africa (including the type) that share a distomedial process on the ultimate leg femur of males that is otherwise unknown in Otostigminae. Second maxillary characters previously used in the diagnosis of Digitipes are dismissed because Indian species do not possess the putatively diagnostic character states. Two new species from the Western Ghats that correspond to groupings identified based on monophyly, sequence divergence and coalescent analysis using molecular data are diagnosed based on distinct morphological characters. They are D. jangii and D. periyarensis n. spp. Three species named by Jangi and Dass (Digitipes barnabasi, D. coonoorensis and D. indicus) are revised based on new collections; D. indicus is a junior subjective synonym of Arthrorhabdus jonesii Verhoeff, 1938, the combination becoming Digitipes jonesii (Verhoeff, 1938) n. comb. The presence of Arthrorhabdus in India is accordingly refuted. Three putative species delimited by molecular and ecological data remain cryptic from the perspective of diagnostic morphological characters and are presently retained in D. barnabasi, D. jangii and D. jonesii. A molecularly-delimited species that resolved as sister group to a well-supported clade of Indian Digitipes is identified as Otostigmus ruficeps Pocock, 1890, originally described from a single specimen and revised herein. One Indian species originally assigned to Digitipes, D. gravelyi, deviates from confidently-assigned Digitipes with respect to several characters and is reassigned to Otostigmus, as O. gravelyi (Jangi and Dass, 1984) n. comb.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Neutral and niche theories give contrasting explanations for the maintenance of tropical tree species diversity. Both have some empirical support, but methods to disentangle their effects have not yet been developed. We applied a statistical measure of spatial structure to data from 14 large tropical forest plots to test a prediction of niche theory that is incompatible with neutral theory: that species in heterogeneous environments should separate out in space according to their niche preferences. We chose plots across a range of topographic heterogeneity, and tested whether pairwise spatial associations among species were more variable in more heterogeneous sites. We found strong support for this prediction, based on a strong positive relationship between variance in the spatial structure of species pairs and topographic heterogeneity across sites. We interpret this pattern as evidence of pervasive niche differentiation, which increases in importance with increasing environmental heterogeneity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tropical dry forests and savannas constitute more than half of all tropical forests and grasslands, but little is known about forest fire regimes within these two extensive types of ecosystems. Forest fire regimes in a predominantly dry forest in India, the Nilgiri landscape, and a predominantly savanna ecosystem in the Sathyamangalam landscape, were examined. Remote sensing data were applied to delineate burned areas, determine fire size characteristics, and to estimate fire-rotation intervals. Belt transects (0.5 ha) were used to estimate forest structure, diversity, and fuel loads. Mean area burned, mean number of fires, and mean fire size per year were substantially higher in the Nilgiri landscape compared to the Sathyamangalam landscape. Mean fire-rotational interval was 7.1 yr in the Nilgiri landscape and 44.1 yr in the Sathyamangalam landscape. Tree (>= 10 cm diameter at breast height) species diversity, tree density, and basal area were significantly higher in the Nilgiri landscape compared to the Sathyamangalam landscape. Total fuel loads were significantly higher in tropical dry and moist deciduous forests in the Nilgiri landscape, but total fuel loads were higher in the tropical dry thorn forests of the Sathyamangalam landscape. Thus, the two landscapes revealed contrasting fire regimes and forest characteristics, with more and four-fold larger fires in the Nilgiri landscape. The dry forests and savannas could be maintained by a combination of factors, such as fire, grazing pressures, and herbivore populations. Understanding the factors maintaining these two ecosystems will be critical for their conservation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Invasive species, local plant communities and invaded ecosystems change over space and time. Quantifying this change may lead to a better understanding of the ecology and the effective management of invasive species. We used data on density of the highly invasive shrub Lantana camara (lantana) for the period 1990-2008 from a 50 ha permanent plot in a seasonally dry tropical forest of Mudumalai in southern India. We used a cumulative link mixed-effects regression approach to model the transition of lantana from one qualitative density state to another as a function of biotic factors such as indicators of competition from local species (lantana itself, perennial grasses, invasive Chromolaena odorata, the native shrub Helicteres isora and basal area of native trees) and abiotic factors such as fire frequency, inter-annual variability of rainfall and relative soil moisture. The density of lantana increased substantially during the study period. Lantana density was negatively associated with the density of H. isora, positively associated with basal area of native trees, but not affected by the presence of grasses or other invasive species. In the absence of fire, lantana density increased with increasing rainfall. When fires occurred, transitions to higher densities occurred at low rainfall values. In drier regions, lantana changed from low to high density as rainfall increased while in wetter regions of the plot, lantana persisted in the dense category irrespective of rainfall. Lantana seems to effectively utilize resources distributed in space and time to its advantage, thus outcompeting local species and maintaining a population that is not yet self-limiting. High-risk areas and years could potentially be identified based on inferences from this study for facilitating management of lantana in tropical dry forests.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bird species are hypothesized to join mixed-species flocks (flocks hereon) either for direct foraging or anti-predation-related benefits. In this study, conducted in a tropical evergreen forest in the Western Ghats of India, we used intra-flock association patterns to generate a community-wide assessment of flocking benefits for different species. We assumed that individuals needed to be physically proximate to particular heterospecific individuals within flocks to obtain any direct foraging benefit (flushed prey, kleptoparasitism, copying foraging locations). Alternatively, for anti-predation benefits, physical proximity to particular heterospecifics is not required, i.e. just being in the flock vicinity can suffice. Therefore, we used choice of locations within flocks to infer whether individual species are obtaining direct foraging or anti-predation benefits. A small subset of the bird community (5/29 species), composed of all members of the sallying guild, showed non-random physical proximity to heterospecifics within flocks. All preferred associates were from non-sallying guilds, suggesting that the sallying species were likely obtaining direct foraging benefits either in the form of flushed or kleptoparasitized prey. The majority of the species (24/29) chose locations randomly with respect to heterospecifics within flocks and, thus, were likely obtaining antipredation benefits. In summary, our study indicates that direct foraging benefits are important for only a small proportion of species in flocks and that predation is likely to be the main driver of flocking for most participants. Our findings apart, our study provides methodological advances that might be useful in understanding asymmetric interactions in social groups of single and multiple species.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The high concentration of the world's species in tropical forests endows these systems with particular importance for retaining global biodiversity, yet it also presents significant challenges for ecology and conservation science. The vast number of rare and yet to be discovered species restricts the applicability of species-level modelling for tropical forests, while the capacity of community classification approaches to identify priorities for conservation and management is also limited. Here we assessed the degree to which macroecological modelling can overcome shortfalls in our knowledge of biodiversity in tropical forests and help identify priority areas for their conservation and management. We used 527 plant community survey plots in the Australian Wet Tropics to generate models and predictions of species richness, compositional dissimilarity, and community composition for all the 4,313 vascular plant species recorded across the region (>1.3 million communities (grid cells)). We then applied these predictions to identify areas of tropical forest likely to contain the greatest concentration of species, rare species, endemic species and primitive angiosperm families. Synthesising these alternative attributes of diversity into a single index of conservation value, we identified two areas within the Australian wet tropics that should be a high priority for future conservation actions: the Atherton Tablelands and Daintree rainforest. Our findings demonstrate the value of macroecological modelling in identifying priority areas for conservation and management actions within highly diverse systems, such as tropical forests.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The current understanding of wildfire effects on water chemistry is limited by the quantification of the elemental dissolution rates from ash and element release rate from the plant litter, as well as quantification of the specific ash contribution to stream water chemistry. The main objective of the study was to provide such knowledge through combination of experimental modelling, field data and end-member mixing analysis (EMMA) of wildfire impact on a watershed scale. The study concerns watershed effects of fire in the Indian subcontinent, a region that is typically not well represented in the fire science literature. In plant litter ash, major elements are either hosted in readily-soluble phases (K, Mg) such as salts, carbonates and oxides or in less-soluble carrier-phases (Si, Ca) such as amorphous silica, quartz and calcite. Accordingly, elemental release rates, inferred from ash leaching experiments in batch reactor, indicated that the element release into solution followed the order K > Mg > Na > Si > Ca. Experiments on plant litter leaching in mixed-flow reactor indicated two dissolution regimes: rapid, over the week and slower over the month. The mean dissolution rates at steady-state (R-ss) indicated that the release of major elements from plant litter followed the order Ca > Si > Cl > Mg > K > Na. R-ss for Si and Ca for tree leaves and herbaceous species are similar to those reported for boreal and European tree species and are higher than that from the dissolution of soil clay minerals. This identifies tropical plant litters as important source of Si and Ca for tropical surface waters. In the wildfire-impacted year 2004, the EMMA indicated that the streamflow composition (Ca, K, Mg, Na, Si, Cl) was controlled by four main sources: rainwater, throughfall, ash leaching and soil solution. The influence of the ash end-member was maximal early in the rainy season (the two first storm events) and decreased later in the rainy season, when the stream was dominated by the throughfall end-member. The contribution of plant litter decay to the streamwater composition for a year not impacted by wildfire is significant with estimated solute fluxes originating from this decay greatly exceed, for most major elements, the annual elemental dissolved fluxes at the Mule Hole watershed outlet. This highlighted the importance of solute retention and vegetation back uptake processes within the soil profile. Overall, the fire increased the mobility and export of major elements from the soils to the stream. It also shifted the vegetation-related contribution to the elemental fluxes at the watershed outlet from long-term (seasonal) to short-term (daily to monthly). (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Natural multispecies acoustic choruses such as the dusk chorus of a tropical rain forest consist of simultaneously signalling individuals of different species whose calls travel through a common shared medium before reaching their `intended' receivers. This causes masking interference between signals and impedes signal detection, recognition and localization. The levels of acoustic overlap depend on a number of factors, including call structure, intensity, habitat-dependent signal attenuation and receiver tuning. In addition, acoustic overlaps should also depend on caller density and the species composition of choruses, including relative and absolute abundance of the different calling species. In this study, we used simulations to examine the effects of chorus species relative abundance and caller density on the levels of effective heterospecific acoustic overlap in multispecies choruses composed of the calls of five species of crickets and katydids that share the understorey of a rain forest in southern India. We found that on average species-even choruses resulted in higher levels of effective heterospecific acoustic overlap than choruses with strong dominance structures. This effect was found consistently across dominance levels ranging from 0.4 to 0.8 for larger choruses of forty individuals. For smaller choruses of twenty individuals, the effect was seen consistently for dominance levels of 0.6 and 0.8 but not 0.4. Effective acoustic overlap (EAO) increased with caller density but the manner and extent of increase depended both on the species' call structure and the acoustic context provided by the composition scenario. The Phaloria sp. experienced very low levels of EAO and was highly buffered to changes in acoustic context whereas other species experienced high FAO across contexts or were poorly buffered. These differences were not simply predictable from call structures. These simulation-based findings may have important implications for acoustic biodiversity monitoring and for the study of acoustic masking interference in natural environments. (C) 2013 Elsevier B.V. All rights reserved.