920 resultados para tree height growth
Resumo:
We compared vegetation structure used by 14 bird species during the 1998 and 1999 breeding seasons to determine what habitat features best accounted for habitat division and community organization in Utah juniper (Juniperus osteosperma) woodlands of southwestern Wyoming. Habitat use was quantified by measuring 24 habitat variables in 461 bird-centered quadrats, each 0.04 ha in size. Using discriminant function analysis, we differentiated between habitat used by 14 bird species along 3 habitat dimensions: (1) variation in shrub cover, overstory juniper cover, mature tree density, understory height, and decadent tree density; (2) a gradient composed of elevation and forb cover; and (3) variation in grass cover, tree height, seedling/sapling cover, and bare ground/rock cover. Of 14 species considered, 9 exhibited substantial habitat partitioning: Mourning Dove (Zenaida macroura), Bewick's Wren (Thryomanes bewickii), Blue-gray Gnatcatcher (Polioptila caerulea), Mountain Bluebird (Sialia currucoides), Plumbeous Vireo (Vireo plumbeus), Green-tailed Towhee (Pipilo chlorurus), Brewer's Sparrow (Spizella breweri), Dark-eyed Junco (Junco hyemalis), and Cassin's Finch (Carpodacus cassinii). Our results indicate juniper bird communities of southwestern Wyoming are organized along a 3-dimensional habitat gradient composed of woodland maturity, elevation, and juniper recruitment. Because juniper birds partition habitat along successional and altitudinal gradients, indiscriminate woodland clearing as well as continued fire suppression will alter species composition. Restoration efforts should ensure that all successional stages of juniper woodland are present on the landscape.
Resumo:
Mangrove forest structure and sediment characteristics were examined in the extensive mangroves of Bocas del Toro, Republic of Panama. Forest structure was characterized to determine if spatial vegetation patterns were repeated over the Bocas del Toro landscape. Using a series of permanent plots and transects we found that the forests of Bocas del Toro were dominated by Rhizophora maugle with very few individuals of Avicennia germinans and Laguncularia racemosa. Despite this low species diversity, there was large variation in forest structure and in edaphic conditions (salinity, concentration of available phosphorus, Eh and sulphide concentration). Aboveground biomass varied 20-fold, from 6.8 Mg ha(-1) in dwarf forests to 194.3 Mg ha(-1) in the forests fringing the land. But variation in forest structure was predictable across the intertidal zone. There was a strong tree height gradient from seaward fringe (mean tree height 3.9 m), decreasing in stature in the interior dwarf forests (mean tree height 0.7 m), and increasing in stature in forests adjacent to the terrestrial forest (mean tree height 4.1 m). The predictable variation in forest structure emerges due to the complex interactions among edaphic and plant factors. Identifying predictable patterns in forest structure will aid in scaling up the ecosystem services provided by mangrove forests in coastal landscapes.
Resumo:
Acknowledgements. This study was supported by the FP7-PEOPLE-2013-IEF Marie-Curie Action – SPATFOREST. Tree data from BCI were provided by the Center for Tropical Forest Science of the Smithsonian Tropical Research Institute and the primary granting agencies that have supported the BCI plot tree census. Data for the liana censuses were supported by the US National Science Foundation grants: DEB-0613666, DEB-0845071, and DEB-1019436 (to SAS). Soil data was funded by the National Science Foundation grants DEB021104, DEB021115, DEB0212284 and DEB0212818 supporting soils mapping in the BCI plot. We thank Helene Muller-Landau for providing some data on tree height for some BCI trees. We also thank all the people that contributed to obtain the data.
Resumo:
Dissertação (mestrado)—Universidade de Brasília, Departamento de Engenharia Florestal, Programa de Pós-Graduação em Ciências Florestasi, 2015.
Resumo:
Among the four commercial chestnut species the C. dentata (Marsh.) Boskh. and C. sativa P. Mill. has excellent quality but more susceptible to diseases when compared to C. mollissima Blume and C. crenata Siebold & Zucc. which has inferior quality but can be used as rootstocks. This work aimed to evaluate the behavior of chestnut varieties grafted in different rootstocks under São Bento do Sapucaí, São Paulo, Brazil condition. In 1986, eleven chestnut cultivars and hybrids - Ibuki (IB), Izumo (IZ), Kinchu (KI), KM1 (KM2), KM(2) KM(2), Moriowase (MO), Okuni (OK), Taishowase (TAI), Tamatsukuri (TAM), Tiodowase (TIO) and Senri (SEN) (only graft) ? were grafted each other resulting in hundred ten combinations. Fifteen-year later grafted trees with minimum of three plants were evaluated for tree height, trunk diameter above and below graft union and graft compatibility. Randomized blocks with three replications were submitted to analysis of variance for tree height and trunk diameter. Grouping analysis using the PROC CLUSTER ? SAS system was used to describe the pattern of variance among different combinations. Seventy eight combinations in hundred ten showed perfect grafting compatibility 6 months after grafting. Forty seven combinations showed incompatibility after transplanting and the dieback rate in each combination ranged from 25 to 100%. Among seventy eight combinations established in the field twenty six had enough plants for evaluation fifteen-year later. Tree height and trunk diameter showed highly significant difference among the combinations. The highest plant (6 m) was grafted on Moriowase and Tamatsukuri which showed the highest compatibility as rootstock. The harvesting season is from November to May where MOR, IB, TAM, OK and TAI behave as early-season-cultivar and SEN the latest one.
Resumo:
Current pear pruning making use of pneumatic shears still is a very labour intensive operation. The Proder project “Avaliação da poda mecânica em pomares de pera” was designed to contribute to solutions that would reduce the present dependence in labour and therefore to promote a reduction in pruning costs. This paper shows the results of a trial made to evaluate the influence of mechanical topping in manual pruning complement field work and pear yield. Topping was performed using a Reynolds 6DT 3.0m cutting bar with six hydraulic-driven circular disc-saws mounted in the three point tractor linkage system. The field trial was performed in a commercial orchard with 20 years, planted in an array of 4m x 2m with tree lines oriented in North-South direction. Trees were trained as the central leader system. In this trial, in a randomised complete block design with four replications, two treatments are being compared leading to 8 plots with one line of 14 trees per plot. The treatments tests were: T1 - manual pruning performed by workers using pneumatic shears, in each year; T2 - Topping the canopy parallel to the ground, using a discs-saw pruning machine mounted in a front loader of an agricultural tractor, followed by manual pruning complement performed by workers with pneumatic shears. Tree height and width was measured, before and after pruning. Work was timed and pear yields evaluated. Mechanical topping seems to be effective in the control of tree height, which can contribute to increase 14% of work rates on manual pruning complement. No significant differences in pear yield were found between treatments.
Resumo:
Purpose This study investigated how nitrogen (N) nutrition and key physiological processes varied under changed water and nitrogen competition resulting from different weed control and fertilisation treatments in a 2-year-old F1 hybrid (Pinus elliottii Engelm var. elliottii × P. caribaea var. hondurensis Barr. ex Golf.) plantation on a grey podzolic soil type, in Southeast Queensland. Materials and methods The study integrated a range of measures including growth variables (diameter at ground level (DGL), diameter at breast height (DBH) and height (H)), foliar variables (including foliar N concentration, foliar δ13C and δ15N) and physiological variables (including photosynthesis (An), stomatal conductance (gs), transpiration (E), intrinsic water use efficiency (WUEi) (A/gs) and xylem pressure potential (ΨXPP)) to better understand the mechanisms influencing growth under different weed control and fertilisation treatments. Five levels of weed control were applied: standard (routine), luxury, intermediate, mechanical and nil weed control, all with routine fertilisation plus an additional treatment, routine weed control and luxury fertilisation. Relative weed cover was assessed at 0.8, 1.1 and 1.6 years after plantation establishment to monitor the effectiveness of weed control treatments. Soil investigation included soil ammonium (NH4 +-N), nitrate (NO3 −-N), potentially mineralizable N (PMN), gravimetric soil moisture content (MC), hot water extractable organic carbon (HWETC), hot water extractable total N (HWETN), total C, total N, stable C isotope composition (δ13C), stable N isotope composition (δ15N), total P and extractable K. Results and discussion There were significant relationships between foliar N concentrations and relative weed cover and between tree growth and foliar N concentration or foliar δ15N, but initial site preparation practices also increased soil N transformations in the planting rows reducing the observable effects of weed control on foliar δ15N. A positive relationship between foliar N concentration and foliar δ13C or photosynthesis indicated that increased N availability to trees positively influenced non-stomatal limitations to photosynthesis. However, trees with increased foliar N concentrations and photosynthesis were negatively related to xylem pressure potential in the afternoons which enhanced stomatal limitations to photosynthesis and WUEi. Conclusions Luxury and intermediate weed control and luxury fertilisation positively influenced growth at early establishment by reducing the competition for water and N resources. This influenced fundamental key physiological processes such as the relationships between foliar N concentration, A n, E, gs and ΨXPP. Results also confirmed that time from cultivation is an important factor influencing the effectiveness of using foliar δ15N as an indicator of soil N transformations.
Resumo:
Key message Eucalyptus pellita demonstrated good growth and wood quality traits in this study, with young plantation grown timber being suitable for both solid and pulp wood products. All traits examined were under moderate levels of genetic control with little genotype by environment interaction when grown on two contrasting sites in Vietnam. Context Eucalyptus pellita currently has a significant role in reforestation in the tropics. Research to support expanded of use of this species is needed: particularly, research to better understand the genetic control of key traits will facilitate the development of genetically improved planting stock. Aims This study aimed to provide estimates of the heritability of diameter at breast height over bark, wood basic density, Kraft pulp yield, modulus of elasticity and microfibril angle, and the genetic correlations among these traits, and understand the importance of genotype by environment interactions in Vietnam. Methods Data for diameter and wood properties were collected from two 10-year-old, open-pollinated progeny trials of E. pellita in Vietnam that evaluated 104 families from six native range and three orchard sources. Wood properties were estimated from wood samples using near-infrared (NIR) spectroscopy. Data were analysed using mixed linear models to estimate genetic parameters (heritability, proportion of variance between seed sources and genetic correlations). Results Variation among the nine sources was small compared to additive variance. Narrow-sense heritability and genetic correlation estimates indicated that simultaneous improvements in most traits could be achieved from selection among and within families as the genetic correlations among traits were either favourable or close to zero. Type B genetic correlations approached one for all traits suggesting that genotype by environment interactions were of little importance. These results support a breeding strategy utilizing a single breeding population advanced by selecting the best individuals across all seed sources. Conclusion Both growth and wood properties have been evaluated. Multi-trait selection for growth and wood property traits will lead to more productive populations of E. pellita both with improved productivity and improved timber and pulp properties.
Resumo:
Current forest growth models and yield tables are almost exclusively based on data from mature trees, reducing their applicability to young and developing stands. To address this gap, young European beech, sessile oak, Scots pine and Norway spruce trees approximately 0 to 10 years old were destructively sampled in a range of naturally regenerated forest stands in Central Europe. Diameter at base and height were first measured in situ for up to 175 individuals per species. Subsequently, the trees were excavated and dry biomass of foliage, branches, stems and roots was measured. Allometric relations were then used to calculate biomass allocation coefficients (BAC) and growth efficiency (GE) patterns in young trees. We found large differences in BAC and GE between broadleaves and conifers, but also between species within these categories. Both BAC and GE are strongly age-specific in young trees, their rapidly changing values reflecting different growth strategies in the earliest stages of growth. We show that linear relationships describing biomass allocation in older trees are not applicable in young trees. To accurately predict forest biomass and carbon stocks, forest growth models need to include species and age specific parameters of biomass allocation patterns.
Resumo:
We combined measurements of tree growth and carbon dioxide exchange to investigate the effects of selective logging on the Aboveground Live Biomass (AGLB) of a tropical rain forest in the Amazon. Most of the measurements began at least 10 months before logging and continued at least 36 months after logging. The logging removed similar to 15% of the trees with Diameter at Breast Height (DBH) greater than 35 cm, which resulted in an instantaneous 10% reduction in AGLB. Both wood production and mortality increased following logging, while Gross Primary Production (GPP) was unchanged. The ratio of wood production to GPP (the wood Carbon Use Efficiency or wood CUE) more than doubled following logging. Small trees (10 cm < DBH < 35 cm) accounted for most of the enhanced wood production. Medium trees (35 cm < DBH < 55 cm) that were within 30 m of canopy gaps created by the logging also showed increased growth. The patterns of enhanced growth are most consistent with logging-induced increases in light availability. The AGLB continued to decline over the study, as mortality outpaced wood production. Wood CUE and mortality remained elevated throughout the 3 years of postlogging measurements. The future trajectory of AGLB and the forest`s carbon balance are uncertain, and will depend on how long it takes for heterotrophic respiration, mortality, and CUE to return to prelogging levels.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)