954 resultados para transmembrane
Resumo:
Chagas disease (CD) causes the highest burden of parasitic diseases in the Western Hemisphere and is therefore a priority for drug research and development. Platelet-activating factor (PAF) causes the CD parasite Trypanosoma cruzi to differentiate, which suggests that the parasite may express PAF receptors. Here, we explored the T. cruzi proteome for PAF receptor-like proteins. From a total of 23,000 protein sequences, we identified 29 hypothetical proteins that are predicted to have seven transmembrane domains (TMDs), which is the main characteristic of the G protein-coupled receptors (GPCRs), including the PAF receptor. The TMDs of these sequences were independently aligned with domains from 25 animal PAF receptors and the sequences were analysed for conserved residues. The conservation score mean values for the TMDs of the hypothetical proteins ranged from 31.7-44.1%, which suggests that if the putative T. cruzi PAF receptor is among the sequences identified, the TMDs are not highly conserved. These results suggest that T. cruzi contains several GPCR-like proteins and that one of these GPCRs may be a PAF receptor. Future studies may further validate the PAF receptor as a target for CD chemotherapy.
Resumo:
A protein from Arabidopsis thaliana (L.) Heynh. showing homology to animal proteins of the NaPi-1 family, involved in the transport of inorganic phosphate, chloride, glutamate and sialic acid, has been characterized. This protein, named ANTR2 (for anion transporters) was shown by chloroplast subfractionation to be localized to the plastid inner envelope in both A. thaliana and Spinacia oleracea (L.). Immunolocalization revealed that ANTR2 was expressed in the leaf mesophyll cells as well as in the developing embryo at the upturned-U stage. Five additional homologues of ANTR2 are found in the Arabidopsis genome, of which one was shown by green fluorescent protein (GFP) fusion to be also located in the chloroplast. All ANTR proteins share homology to the animal NaPi-1 family, as well as to other organic-anion transporters that are members of the Anion:Cation Symporter (ACS) family, and share the main features of transporters from this family, including the presence of 12 putative transmembrane domains and of a 7-amino acid motif in the fourth putative transmembrane domain. ANTR2 thus represent a novel protein of the plastid inner envelope that is likely to be involved in anion transport.
Resumo:
The flaviviral envelope proteins, E protein and precursor membrane protein, are mainly associated with the endoplasmic reticulum (ER) through two transmembrane (TM) domains that are exposed to the luminal face of this compartment. Their retention is associated with the viral assembly process. ER-retrieval motifs were mapped at the carboxy terminus of these envelope proteins. A recombinant yellow fever (YF) 17D virus expressing the reporter green fluorescent protein (GFP) with the stem-anchor (SA) region of E protein fused to its carboxy terminus was subjected to distinct genetic mutations in the SA sequence to investigate their effect on ER retention. Initially, we introduced progressive deletions of the stem elements (H1, CS and H2). In a second set of mutants, the effect of a length increase for the first TM anchor region was evaluated either by replacing it with the longer TM of human LAMP-1 or by the insertion of the VALLLVA sequence into its carboxy terminus. We did not detect any effect on the GFP localisation in the cell, which remained associated with the ER. Further studies should be undertaken to elucidate the causes of the ER retention of recombinant proteins expressed at the intergenic E/NS1 region of the YF 17D virus polyprotein.
Resumo:
Résumé Les caspases sont des protéases essentielles lors de l'induction de l'apoptose ou pour la maturation de certaines cytokines. Elles peuvent être divisées en deux groupes: les caspases initiatrices, qui sont les premières activées lors d'un signal pro-apoptotique, et les caspases effectrices, qui sont activées par les caspases initiatrices et sont responsables du clivage et de la dégradation des substrats cellulaires. Les caspases initiatrices sont activées dans des complexes de haut poids moléculaire: l'apoptosome pour la caspase-9 et le DISC pour la caspase-8. La caspase-2 est également une caspase initiatrice qui contient un domaine CARD. Cependant son mécanisme d'activation n'est pas encore connu. Lors de cette étude, nous avons découvert et caractérisé le complexe qui permet l'activation de la caspase-2. Ce complexe, appelé le PIDDosome, est composé de PIDD/LRDD, de la protéine adaptatrice RAIDD et de la protéase caspase-2. L'expression forcée de PIDD induit l'activation constitutive de la caspase-2. Cela entraîne la mort ou la sensibilisation à la mort des cellules selon la lignée étudiée. Cet effet est expliqué par une perte du potentiel de membrane de la mitochondrie, certainement dû à un effet direct de la caspase-2. Peu de choses sont connues sur PIDD: c'est une protéine contenant un domaine DD qui peut être induite par p53. Nous avons caractérisé PIDD et montré qu'elle est exprimée de façon ubiquitaire. PIDD est constitutivement auto-clivée environ au milieu de la protéine, ce qui génère deux fragments qui restent liés l'un à l'autre. Le fragment N-terminal a une activité régulatrice et le C-terminal une activité effectrice. De plus, PIDD peut se déplacer entre le cytoplasme et le noyau. Enfin, nous avons découvert que PIDD est également impliquée dans l'induction de NF¬ -κB en réponse à des dommages à l'ADN. PIDD est responsable de la modification par sumo de NEMO, étape nécessaire à l'induction de NF-κB après des dommages à l'ADN. Ainsi PIDD semble être à l'intersection de la décision que prend la cellule entre survivre et réparer les dommages, ou entrer en apoptose. Summary Caspases are a family of proteases that fulfill varied and often critical roles in mammalian apoptosis or proteolytic activation of cytokines. Caspases can be divided into two sub-groups: initiator caspases, which are the first activated after a pro-apoptotic signal, and effector caspases, which are activated by initiator caspases and that are responsible for the cleavage and degradation of cellular components. Initiator caspases are activated in high molecular weight platforms such as the apoptosome for caspase-9 or the DISC for caspase-8. Caspase-2 is a CARD-containing initiator caspase whose mechanism of activation was not yet known. In this study we have identified an activating platform for caspase-2. This high molecular weight complex, called the PIDDosome, is composed of PIDD/LRDD, the adaptor protein RAIDD and caspase-2. Constitutive expression of PIDD led to constitutive activation of caspase-2, which in some cell lines was sufficient to induce cell death while in others it merely sensitizes. Active caspase-2 was found to disturb directly the mitochondria by inducing a partial loss of the transmembrane potential. Very little was known on PIDD. It can be induce by p53 and inhibition of its expression by antisense oligonucleotides diminishes p53-dependent apoptosis. We decided to further characterize PIDD function and expression. PIDD possesses seven LRR, two Zu5 domains and one DD. It is ubiquitously expressed and appears to be constitutively cleaved by auto- processing into two main fragments equal in size. The two fragments remain bound to one another and constitute a regulatory N-terminal fragment and an active C-terminal fragment. In addition, PIDD can shuttle between the cytoplasm and the nucleus. Finally, investigating the possible relevance of new interaction partners, we found that PIDD is implicated in DNA damage-induced NF- κB. PIDD binds to RIP1 and to NEMO. In response to DNA damage, PIDD translocates to the nucleus and mediates sumo- modification of NEMO, a necessary step in DNA damage-induced NF-κB. All together these results raise the possibility that PIDD acts as a molecular switch between proliferation and repair, and apoptosis following DNA damage.
Resumo:
Résumé au large public Notre corps est constitué de différents types de cellules. La condition minimale ou primordiale pour la survie des cellules est d'avoir de l'énergie. Cette tâche est assumée en partie par une protéine qui se situe dans la membrane de chaque cellule. Nommé Na, K¬ATPase ou pompe à sodium, c'est une protéine pressente dans toutes les cellules chez les mammifères est composée de deux sous-unités, α et β. En transportant 3 ions de sodium hors de la cellule et 2 ions de potassium à l'intérieur de la cellule, elle transforme l'énergie chimique sous forme de l'ATP en énergie motrice, qui permet aux cellules par la suite d'échanger des matériaux entre l'espace intracellulaire et extracellulaire ainsi que d'ingérer des nutriments provenant de son environnement. Le manque de cette protéine chez la souris entraîne la mort de l'embryon. Des défauts fonctionnels de cette protéine sont responsables de plusieurs maladies humaines comme par exemple, un type de migraine. En dehors de sa fonction vitale, cette protéine est également engagée dans diverses activités physiologiques comme la contractilité musculaire, l'activité nerveuse et la régulation du volume sanguin. Vue l'importance de cette protéine, sa découverte par Jens C. Skou en 1957 a été honorée d'un Prix Noble de chimie quarante ans plus tard. Depuis lors, nous connaissons de mieux en mieux les mécanismes de fonctionnement de la Na, K-ATPase. Entre autre, sa régulation par une famille de protéines appelées protéines FXYD. Cette famille contient 7 membres (FXYD 1-7). L'un d'entre eux nommé FXYD 2 est lié à une maladie héréditaire connue sous le nom de hypomagnesemia. Nous disposons actuellement d'informations concernant les conséquences de la régulation par les protéines FXYD sur activité de la Na, K-ATPase, mais nous savons très peu sur le mode d'interaction entre les protéines FXYD et la Na, K-ATPase. Dans ce travail de thèse, nous avons réussi à localiser des zones d'interaction dans la sous- unité a de la Na, K-ATPase et dans FXYD 7. En même temps, nous avons déterminé un 3ème site de liaison spécifique au sodium de la Na, K-ATPase. Une partie de ce site se situe à l'intérieur d'un domaine protéique qui interagit avec les protéines FXYD. De plus, ce site a été démontré comme responsable d'un mécanisme de transport de la Na, K-ATPase caractérisé par un influx ionique. En conclusion, les résultats de ce travail de thèse fournissent de nouvelles preuves sur les régions d'interaction entre la Na, K-ATPase et les protéines FXYD. La détermination d'un 3ème site spécifique au sodium et sa relation avec un influx ionique offrent la possibilité 1) d'explorer les mécanismes avec lesquels les protéines FXYD régulent l'activité de la Na, ATPase et 2) de localiser un site à sodium qui est essentielle pour mieux comprendre l'organisation et le fonctionnement de la Na, K-ATPase. Résumé Les gradients de concentration de Na+ et de K+ à travers la membrane plasmatique des cellules animales sont cruciaux pour la survie et l'homéostasie de cellules. De plus, des fonctions cellulaires spécifiques telles que la reabsorption de Na dans le rein et le côlon, la contraction musculaire et l'excitabilité nerveuse dépendent de ces gradients. La Na, K¬ATPase ou pompe à sodium est une protéine membranaire ubiquitaire. Elle crée et maintient ces gradients en utilisant l'énergie obtenu par l'hydrolyse de l'adénosine triphosphate. L'unité fonctionnelle minimale de cette protéine se compose d'une sous-unité catalytique α et d'une sous-unité régulatrice β. Récemment, il a été montré que des membres de la famille FXYD, sont des régulateurs tissu-spécifiques de la Na, K-ATPase qui influencent ses propriétés de transport. Cependant, on connaît peu de chose au sujet de la nature moléculaire de l'interaction entre les protéines FXYD et la Na, K-ATPase. Dans cette étude, nous fournissons, pour la première fois, l'évidence directe que des résidus du domaine transmembranaire (TM) 9 de la sous-unité α de la Na, K-ATPase sont impliqués dans l'interaction fonctionnelle et structurale avec les protéines FXYD. De plus nous avons identifié des régions dans le domaine transmembranaire de FXYD 7 qui sont importantes pour l'association stable avec la Na, K-ATPase et une série de résidus responsables des régulations fonctionnelles. Nous avons aussi montré les contributions fonctionnelles du TM 9 de la Na, K-ATPase à la translocation de Na + en déterminant un 3ème site spécifique au Na+. Ce site se situe probablement dans un espace entre TM 9, TM 6 et TM 5 de la sous-unité α de la pompe à sodium. De plus, nous avons constaté que le 3ème site de Na + est fonctionnellement lié à un courant entrant de la pompe sensible à l'ouabaïne et activé par le pH acide. En conclusion, ce travail donne de nouvelles perspectives de l'interaction structurale et fonctionnelle entre les protéines FXYD et la Na, K-ATPase. En outre, les contributions fonctionnelles de TM 9 offrent de nouvelles possibilités pour explorer le mécanisme par lequel les protéines FXYD régulent les propriétés fonctionnelles de la Na, K-ATPase. La détermination du 3ème site au Na + fournit une compréhension avancée du site spécifique au Na + de la Na, K-ATPase et du mécanisme de transport de la Na, K-ATPase. Summary The Na+ and K+ gradients across the plasma membrane of animal cells are crucial for cell survival and homeostasis. Moreover, specific tissue functions such as Na+ reabsorption in kidney and colon, muscle contraction and nerve excitability depend on the maintenance of these gradients. Na, K-ATPase or sodium pump, an ubiquitous membrane protein, creates and maintains these gradients by using the energy from the hydrolysis of ATP. The minimal functional unit of this protein is composed of a catalytic α subunit and a regulatory β subunit. Recently, members of the FXYD family, have been reported to be tissue-specific regulators of Na, K-ATPase by influencing its transport properties. However, little is known about the molecular nature of the interaction between FXYD proteins and Na, K-ATPase. In this study, we provide, for the first time, direct evidence that residues from the transmembrane (TM) domain 9 of the α subunit of Na, K-ATPase are implicated in the functional and structural interaction with FXYD proteins. Moreover, we have identified regions in the TM domain of FXYD 7 important for the stable association with Na, K-ATPase and a stretch of residues responsible for the functional regulations. We have further revealed the functional contributions of TM 9 of the Na, K-ATPase α subunit to the Na+ translocation by determining a 3rd Na+-specific cation binding site. This site is likely in a space between TM 9, TM 6 and TM 5 of the a subunit of the sodium pump. Moreover, we have found that the 3rd Na+ binding site is functionally linked to an acidic pH- activated ouabain-sensitive inward pump current. In conclusion, this work gives new insights into the structural and functional interaction between FXYD proteins and Na, K-ATPase. Functional contributions of TM 9 offer new possibilities to explore the mechanism by which FXYD proteins regulate functional properties of Na, K-ATPase. The determination of the 3rd Na+ binding site provides an advanced understanding concerning the Na+ -specific binding site of Na, K-ATPase and the 3rd Na+ site related transport mechanism.
Resumo:
Myeloid cells express the TNF family ligands BAFF/BLyS and APRIL, which exert their effects on B cells at different stages of differentiation via the receptors BAFFR, TACI (Transmembrane Activator and CAML-Interactor) and/or BCMA (B Cell Maturation Antigen). BAFF and APRIL are proteins expressed at the cell membrane, with both extracellular and intracellular domains. Therefore, receptor/ligand engagement may also result in signals in ligand-expressing cells via so-called "reverse signalling". In order to understand how TACI-Fc (atacicept) technically may mediate immune stimulation instead of suppression, we investigated its potential to activate reverse signalling through BAFF and APRIL. BAFFR-Fc and TACI-Fc, but not Fn14-Fc, reproducibly stimulated the ERK and other signalling pathways in bone marrow-derived mouse macrophages. However, these effects were independent of BAFF or APRIL since the same activation profile was observed with BAFF- or APRIL-deficient cells. Instead, cell activation correlated with the presence of high molecular mass forms of BAFFR-Fc and TACI-Fc and was strongly impaired in macrophages deficient for Fc receptor gamma chain. Moreover, a TACI-Fc defective for Fc receptor binding elicited no detectable signal. Although these results do not formally rule out the existence of BAFF or APRIL reverse signalling (via pathways not tested in this study), they provide no evidence in support of reverse signalling and point to the importance of using appropriate specificity controls when working with Fc receptor-expressing myeloid cells.
Resumo:
Mutations in the CACNA1A gene, encoding the α1 subunit of the voltage-gated calcium channel Ca(V)2.1 (P/Q-type), have been associated with three neurological phenotypes: familial and sporadic hemiplegic migraine type 1 (FHM1, SHM1), episodic ataxia type 2 (EA2), and spinocerebellar ataxia type 6 (SCA6). We report a child with congenital ataxia, abnormal eye movements and developmental delay who presented severe attacks of hemiplegic migraine triggered by minor head traumas and associated with hemispheric swelling and seizures. Progressive cerebellar atrophy was also observed. Remission of the attacks was obtained with acetazolamide. A de novo 3 bp deletion was found in heterozygosity causing loss of a phenylalanine residue at position 1502, in one of the critical transmembrane domains of the protein contributing to the inner part of the pore. We characterized the electrophysiology of this mutant in a Xenopus oocyte in vitro system and showed that it causes gain of function of the channel. The mutant Ca(V)2.1 activates at lower voltage threshold than the wild type. These findings provide further evidence of this molecular mechanism as causative of FHM1 and expand the phenotypic spectrum of CACNA1A mutations with a child exhibiting severe SHM1 and non-episodic ataxia of congenital onset.
Resumo:
The extraordinary sensitivity of CD8+ T cells to recognize antigen impinges to a large extent on the coreceptor CD8. While several studies have shown that the CD8beta chain endows CD8 with efficient coreceptor function, the molecular basis for this is enigmatic. Here we report that cell-associated CD8alphabeta, but not CD8alphaalpha or soluble CD8alphabeta, substantially increases the avidity of T cell receptor (TCR)-ligand binding. To elucidate how the cytoplasmic and transmembrane portions of CD8beta endow CD8 with efficient coreceptor function, we examined T1.4 T cell hybridomas transfected with various CD8beta constructs. T1.4 hybridomas recognize a photoreactive Plasmodium berghei circumsporozoite (PbCS) peptide derivative (PbCS (4-azidobezoic acid [ABA])) in the context of H-2K(d), and permit assessment of TCR-ligand binding by TCR photoaffinity labeling. We find that the cytoplasmic portion of CD8beta, mainly due to its palmitoylation, mediates partitioning of CD8 in lipid rafts, where it efficiently associates with p56(lck). In addition, the cytoplasmic portion of CD8beta mediates constitutive association of CD8 with TCR/CD3. The resulting TCR-CD8 adducts exhibit high affinity for major histocompatibility complex (MHC)-peptide. Importantly, because CD8alphabeta partitions in rafts, its interaction with TCR/CD3 promotes raft association of TCR/CD3. Engagement of these TCR/CD3-CD8/lck adducts by multimeric MHC-peptide induces activation of p56(lck) in rafts, which in turn phosphorylates CD3 and initiates T cell activation.
Resumo:
Non-structural protein 2 (NS2) plays an important role in hepatitis C virus (HCV) assembly, but neither the exact contribution of this protein to the assembly process nor its complete structure are known. In this study we used a combination of genetic, biochemical and structural methods to decipher the role of NS2 in infectious virus particle formation. A large panel of NS2 mutations targeting the N-terminal membrane binding region was generated. They were selected based on a membrane topology model that we established by determining the NMR structures of N-terminal NS2 transmembrane segments. Mutants affected in virion assembly, but not RNA replication, were selected for pseudoreversion in cell culture. Rescue mutations restoring virus assembly to various degrees emerged in E2, p7, NS3 and NS2 itself arguing for an interaction between these proteins. To confirm this assumption we developed a fully functional JFH1 genome expressing an N-terminally tagged NS2 demonstrating efficient pull-down of NS2 with p7, E2 and NS3 and, to a lower extent, NS5A. Several of the mutations blocking virus assembly disrupted some of these interactions that were restored to various degrees by those pseudoreversions that also restored assembly. Immunofluorescence analyses revealed a time-dependent NS2 colocalization with E2 at sites close to lipid droplets (LDs) together with NS3 and NS5A. Importantly, NS2 of a mutant defective in assembly abrogates NS2 colocalization around LDs with E2 and NS3, which is restored by a pseudoreversion in p7, whereas NS5A is recruited to LDs in an NS2-independent manner. In conclusion, our results suggest that NS2 orchestrates HCV particle formation by participation in multiple protein-protein interactions required for their recruitment to assembly sites in close proximity of LDs.
Resumo:
Studies in cystic fibrosis patients and mice overexpressing the epithelial Na(+) channel beta-subunit (betaENaC-Tg) suggest that raised airway Na(+) transport and airway surface liquid (ASL) depletion are central to the pathogenesis of cystic fibrosis lung disease. However, patients or mice with Liddle gain-of-function betaENaC mutations exhibit hypertension but no lung disease. To investigate this apparent paradox, we compared the airway phenotype (nasal versus tracheal) of Liddle with CFTR-null, betaENaC-Tg, and double mutant mice. In mouse nasal epithelium, the region that functionally mimics human airways, high levels of CFTR expression inhibited Liddle epithelial Nat channel (ENaC) hyperfunction. Conversely, in mouse trachea, low levels of CFTR failed to suppress Liddle ENaC hyperfunction. Indeed, Na(+) transport measured in Ussing chambers ("flooded" conditions) was raised in both Liddle and betaENaC-Tg mice. Because enhanced Na(+) transport did not correlate with lung disease in these mutant mice, measurements in tracheal cultures under physiologic "thin film" conditions and in vivo were performed. Regulation of ASL volume and ENaC-mediated Na(+) absorption were intact in Liddle but defective in betaENaC-Tg mice. We conclude that the capacity to regulate Na(+) transport and ASL volume, not absolute Na(+) transport rates in Ussing chambers, is the key physiologic function protecting airways from dehydration-induced lung disease.
Resumo:
Arenaviruses are rodent-born world-wide distributed negative strand RNA viruses that comprise a number of important human pathogens including Lassa virus (LASV) which causes more than 3 00'000 infections annually in Western Africa. Lymphocytic choriomeningitis virus (LCMV) is the prototypic member of the arenavirus family, which is divided in two major subgroups according to serological properties and geographical distribution, the Old World and New World arenaviruses. The envelope glycoprotein precursors (GPCs) of arenaviruses have to undergo proteolytic processing to acquire biological function and to be incorporated into progeny virions. A cellular enzyme is responsible for this processing: the Subtilisin Kexin Isozyme-1 or Site-1 protease (SKI- 1/S1P). In this thesis we have studied the relationship between SKI-1/S1P and the envelope GPs of arenaviruses. In a first project, we investigated the molecular interactions between SKI-1/SIP and arenavirus GPCs. Using SKI-1/SIP mutants, we confirmed previously published observations locating LCMV GPC and LASV GPC processing in the Late Golgi/TGN and ER/cis-Golgi, respectively. A single mutation in the cleavage site of LCMV was sufficient to re-locate SKI- 1/SIP-mediated processing from the late Golgi/TGN to the ER/cis-Golgi. We then demonstrated that the transmembrane domain, the C-terminal tail and the phosphorylation sites of SKI-1/S1P are dispensable for GPC processing. Additionally we identified a SKI- 1/S1P mutant defective for autoprocessing at site Β, B' that was selectively impaired in processing of viral GPCs but not cellular substrates. We also showed that a soluble variant of SKI-1/SIΡ was unable to cleave envelope GPs at the cell surface when added in the culture medium. This study highlighted a new target for small molecule inhibitors that would specifically impair GPC but not cellular substrate processing. In a second project, we identified and characterized two residues: LASV GPC Y253 and SKI-1/S1P Y285 that are important for the SKI-1/SIP-mediated LASV GPC cleavage. An alignment of GPC sequences revealed a conserved aromatic residue in P7 position in the GPCs of Old World and Clade C of New World arenaviruses. Mutations in GPC at position P7 impaired processing efficiency. In SKI-1/S1P, mutating Y285 into A negatively affected processing of substrates containing aromatic residues in P7, without affecting others. This property could be used to develop specific drugs targeting SKI-1/SIP-mediated cleavage of LASV GPC without affecting cellular substrates. As a third project we studied the role of the SKI-1/SIP-mediated processing and the unusual stable signal peptide (SSP) for the folding and secretion of soluble forms of the ectodomain of LASV and LCMV glycoproteins. We provide evidence that the transmembrane domain and the cytosolic tail are crucial for the stability of the prefusion conformation of arenavirus GP and that the SSP is required for transport and processing of full-length GP, but not the soluble ectodomain per se. Taken together, these results will lead to a better understanding of the complex interactions between arenavirus GPCs and SKI-1/S IP, paving the avenue for the development of novel anti-arenaviral therapeutics. - Les Arenavirus sont des virus à ARN négatif distribués mondialement et portés par les rongeurs. Cette famille de virus comprend des virus hautement pathogènes pour l'homme comme le virus de Lassa (LASV) qui cause plus de 300Ό00 infections par année en Afrique de l'Ouest. Le virus de la chorioméningite lymphocytaire (LCMV) est le représentant de cette famille qui est divisée en deux sous-groupes selon des critères sérologiques et de distributions géographiques: arenavirus du Nouveau et de l'Ancien monde. Les glycoprotéines d'enveloppe de ces virus (GPCs) doivent être clivées pour être incorporées dans le virus et ainsi lui permettre d'être infectieux. Une enzyme cellulaire est responsable de ce clivage : la Subtilisin Kexin Isozyme-1 ou protéase Site-1 (SKI-l/SlP). Dans cette thèse, nous avons étudié la relation entre cette enzyme cellulaire et les GPs des arenavirus. Dans un premier temps, nous avons étudié les interactions moléculaires entre SKI- 1/S1P et GPC. A l'aide de mutants de SKI-l/SlP, nous avons confirmé des résultats précédemment publiés montrant que les glycoprotéines d'enveloppe de LASV sont clivés dans le réticulum endoplasmique/cis-Golgi alors que celles de LCMV sont clivées dans le Golgi tardif/TGN. Une seule mutation dans le site de clivage de la glycoprotéine de LCMV est suffisante pour changer le compartiment cellulaire dans lequel est clivée cette glycoprotéine. Ensuite, nous avons démontré que le domaine transmembranaire, la partie cytosolique C-terminale ainsi que les sites de phosphorylations de cette enzyme ne sont pas indispensables pour permettre le clivage de GPC. De plus, nous avons identifié un mutant de SKI-l/SlP dans lequel Γ autoprocessing au site B,B' est impossible, incapable de cliver GPC mais toujours pleinement fonctionnelle envers ses substrats cellulaires. Nous avons également démontré qu'une forme soluble de SKI-l/SlP ajoutée dans le milieu de culture n'est pas capable de couper GPC à la surface de la cellule. Cette étude a défini une nouvelle cible potentielle pour un médicament qui inhiberait le clivage des glycoprotéines des arenavirus sans affecter les processus normaux de la cellule. Dans un second project, nous avons identifié deux acides aminés, LASV GPC Y253 et SKI-l/SlP Y285, qui sont important pour le clivage de LASV GPC. Un alignement des séquences de clivage des GPCs a montré qu'un résidu aromatique est conservé en position P7 du site de clivage chez tous les arenavirus de l'Ancien monde et dans le clade C des arenavirus du Nouveau monde. Une mutation de cet acide aminée dans GPC réduit l'efficacité de clivage par SKI-l/SlP. Mutation de la tyrosine 285 de SKI-l/SlP en alanine affecte négativement le clivage des substrats contenant un résidu aromatique en position P7 sans affecter les autres. Cette propriété pourrait être utilisée pour le développement de médicaments spécifiques ciblant le clivage de GPC. Finalement, nous avons étudié le rôle du processing accomplit par SKI-l/SlP et du signal peptide pour le pliage et la sécrétion de formes solubles des glycoprotéines de LASV et LCMV. Nous avons montré que le domaine transmembranaire et la partie cytosolique de GP sont crucials pour la stabilité de la conformation pre-fusionnelle des GPs et que SSP est nécessaire pour le transport et le processing de GP, mais pas de son ecto-domaine soluble. En conclusion, les résultats obtenus durant cette thèse permettrons de mieux comprendre les interactions complexes entre SKI-l/SlP et les glycoprotéines des arenavirus, ouvrant le chemin pour le développement de nouveaux médicaments anti-arénaviraux.
Resumo:
Connexins are transmembrane proteins that form gap junction- and hemi-channels. Once inserted into the membrane, hemi-channels (connexons) allow for diffusion of ions and small molecules (<1kDa) between the extracellular space and the cytosol. Gap junction channels allow diffusion of similar molecules between the cytoplasms of adjacent cells. The expression and function of connexins in blood vessels has been intensely studied in the last few decades. In contrast, only a few studies paid attention to lymphatic vessels; convincing in vivo data with respect to expression patterns of lymphatic connexins and their functional roles have only recently begun to emerge. Interestingly, mutations in connexin genes have been linked to diseases of lymphatic vasculature, most notably primary and secondary lymphedema. This review summarizes the available data regarding lymphatic connexins. More specifically it addresses (i) early studies aimed at presence of gap junction-like structures in lymphatic vessels, (ii) more recent studies focusing on lymphatic connexins using genetically engineered mice, and (iii) results of clinical studies that have reported lymphedema-linked mutations in connexin genes.
Resumo:
Arenaviruses merit interest as clinically important human pathogens and include several causative agents, chiefly Lassa virus (LASV), of hemorrhagic fever disease in humans. There are no licensed LASV vaccines, and current antiarenavirus therapy is limited to the use of ribavirin, which is only partially effective and is associated with significant side effects. The arenavirus glycoprotein (GP) precursor GPC is processed by the cellular site 1 protease (S1P) to generate the peripheral virion attachment protein GP1 and the fusion-active transmembrane protein GP2, which is critical for production of infectious progeny and virus propagation. Therefore, S1P-mediated processing of arenavirus GPC is a promising target for therapeutic intervention. To this end, we have evaluated the antiarenaviral activity of PF-429242, a recently described small-molecule inhibitor of S1P. PF-429242 efficiently prevented the processing of GPC from the prototypic arenavirus lymphocytic choriomeningitis virus (LCMV) and LASV, which correlated with the compound's potent antiviral activity against LCMV and LASV in cultured cells. In contrast, a recombinant LCMV expressing a GPC whose processing into GP1 and GP2 was mediated by furin, instead of S1P, was highly resistant to PF-429242 treatment. PF-429242 did not affect virus RNA replication or budding but had a modest effect on virus cell entry, indicating that the antiarenaviral activity of PF-429242 was mostly related to its ability to inhibit S1P-mediated processing of arenavirus GPC. Our findings support the feasibility of using small-molecule inhibitors of S1P-mediated processing of arenavirus GPC as a novel antiviral strategy.
Resumo:
Hepatitis C virus (HCV) NS3-4A is a membrane-associated multifunctional protein harboring serine protease and RNA helicase activities. It is an essential component of the HCV replication complex and a prime target for antiviral intervention. Here, we show that membrane association and structural organization of HCV NS3-4A are ensured in a cooperative manner by two membrane-binding determinants. We demonstrate that the N-terminal 21 amino acids of NS4A form a transmembrane alpha-helix that may be involved in intramembrane protein-protein interactions important for the assembly of a functional replication complex. In addition, we demonstrate that amphipathic helix alpha(0), formed by NS3 residues 12-23, serves as a second essential determinant for membrane association of NS3-4A, allowing proper positioning of the serine protease active site on the membrane. These results allowed us to propose a dynamic model for the membrane association, processing, and structural organization of NS3-4A on the membrane. This model has implications for the functional architecture of the HCV replication complex, proteolytic targeting of host factors, and drug design.
Resumo:
P-glycoprotein (P-gly) is the transmembrane efflux pump responsible for multidrug resistance in tumor cells. The activity of P-gly in mature peripheral lymphocytes is lineage specific, with CD8+ T cells and natural killer (NK) cells expressing high levels as compared to CD4+ T cells and B cells. We have now investigated P-gly activity in immature and mature subsets of mouse thymocytes. Our data indicate that P-gly activity is undetectable in immature CD4-8- and CD4+8+ thymocyte subsets. Among mature thymocytes, P-gly activity is absent in the CD4+ subset but present in the more mature (HSAlow) fraction of CD8+ cells. Furthermore, while thymic CD4-8- T cell receptor (TCR) gamma delta cells have little P-gly activity, a minor subset of CD4-8- or CD4+ TCR alpha beta + thymocytes bearing the NK1.1 surface marker expresses high levels of P-gly activity. Collectively, our results indicate that P-gly activity arises late during thymus development and is expressed in a lineage-specific fashion.