947 resultados para time pressure
Resumo:
Pressure-jump (p-jump)-induced relaxation kinetics was used to explore the energy landscape of protein folding/unfolding of Y115W, a fluorescent variant of ribonuclease A. Pressure-jumps of 40MPa amplitude (5ms dead-time) were conducted both to higher (unfolding) and to lower (folding) pressure, in the range from 100 to 500MPa, between 30 and 50°C. Significant deviations from the expected symmetrical protein relaxation kinetics were observed. Whereas downward p-jumps resulted always in single exponential kinetics, the kinetics induced by upward p-jumps were biphasic in the low pressure range and monophasic at higher pressures. The relative amplitude of the slow phase decreased as a function of both pressure and temperature. At 50°C, only the fast phase remained. These results can be interpreted within the framework of a two-dimensional energy surface containing a pressure- and temperature-dependent barrier between two unfolded states differing in the isomeric state of the Asn-113–Pro-114 bond. Analysis of the activation volume of the fast kinetic phase revealed a temperature-dependent shift of the unfolding transition state to a larger volume. The observed compensation of this effect by glycerol offers an explanation for its protein stabilizing effect
Resumo:
Time-resolved studies of germylene, GeH2, generated by the 193 nm laser flash photolysis of 3,4-dimethyl-1-germacyclopent-3-ene, have been carried out to obtain rate constants for its bimolecular reactions with ethyl- and diethylgermanes in the gas phase. The reactions were studied over the pressure range 1-100 Torr with SF6 as bath gas and at five temperatures in the range 297-564 K. Only slight pressure dependences were found for GeH2 + EtGeH3 (399, 486, and 564 K). The high pressure rate constants gave the following Arrhenius parameters: for GeH2 + EtGeH3, log A = -10.75 +/- 0.08 and E-a = -6.7 +/- 0.6 kJ mol(-1); for GeH2 + Et2GeH2, log A = -10.68 +/- 0.11 and E-a = -6.95 +/- 0.80 kJ mol(-1). These are consistent with fast, near collision-controlled, association processes at 298 K. RRKM modeling calculations are, for the most part, consistent with the observed pressure dependence of GeH2 + EtGeH3. The ethyl substituent effects have been extracted from these results and are much larger than the analogous methyl substituent effects in the SiH2 + methylsilane reaction series. This is consistent with a mechanistic model for Ge-H insertion in which the intermediate complex has a sizable secondary barrier to rearrangement.
Resumo:
Time resolved studies of germylene, GeH2, generated by laser flash photolysis of 3,4-dimethylgermacyclopentene-3, have been carried out to obtain rate constants for its bimolecular reaction with acetylene, C2H2. The reaction was studied in the gas-phase over the pressure range 1-100 Tort, with SF6 as bath gas, at 5 temperatures in the range 297-553 K. The reaction showed a very slight pressure dependence at higher temperatures. The high pressure rate constants (obtained by extrapolation at the three higher temperatures) gave the Arrhenius equation: log(k(infinity)/cm(3) molecule(-1) s(-1)) (-10.94 +/- 0.05) + (6.10 +/- 0.36 kJ mol(-1))/RTln10. These Arrhenius parameters are consistent with a fast reaction occurring at approximately 30% of the collision rate at 298 K. Quantum chemical calculations (both DFT and ab initio G2//B3LYP and G2//QCISD) of the GeC2H4 potential energy surface (PES), show that GeH2 + C2H2 react initially to form germirene which can isomerise to vinylgermylene with a relatively low barrier. RRKM modelling, based on a loose association transition state, but assuming vinylgermylene is the end product (used in combination with a weak collisional deactivation model) predicts a strong pressure dependence using the calculated energies, in conflict with the experimental evidence. The detailed GeC2H4 PES shows considerable complexity with ten other accessible stable minima (B3LYP level), the three most stable of which are all germylenes. Routes through this complex surface were examined in detail. The only product combination which appears capable of satisfying the (P-3) + C2H4.C2H4 was confirmed as a product by GC observed lack of a strong pressure dependence is Ge(P-3) + C2H4. C2H4 was confirmed as a product by GC analysis. Although the formation of these products are shown to be possible by singlet-triplet curve crossing during dissociation of 1-germiranylidene (1-germacyclopropylidene), it seems more likely (on thermochernical grounds) that the triplet biradical, (GeCH2CH2.)-Ge-., is the immediate product precursor. Comparisons are made with the reaction of SiH2 with C2H2.
Time-resolved gas-phase kinetic and quantum chemical studies of the reaction of silylene with oxygen
Resumo:
Time-resolved kinetic studies of the reaction of silylene, SiH2, generated by laser flash photolysis of phenylsilane, have been carried out to obtain rate constants for its bimolecular reaction with O-2. The reaction was studied in the gas phase over the pressure range 1-100 Torr in SF6 bath gas, at five temperatures in the range 297-600 K. The second order rate constants at 10 Torr were fitted to the Arrhenius equation: log(k/cm(3) molecule(-1) s(-1)) = (-11.08 +/- 0.04) + (1.57 +/- 0.32 kJ mol(-1))/RT ln10 The decrease in rate constant values with increasing temperature, although systematic is very small. The rate constants showed slight increases in value with pressure at each temperature, but this was scarcely beyond experimental uncertainty. From estimates of Lennard-Jones collision rates, this reaction is occurring at ca. 1 in 20 collisions, almost independent of pressure and temperature. Ab initio calculations at the G3 level backed further by multi-configurational (MC) SCF calculations, augmented by second order perturbation theory (MRMP2), support a mechanism in which the initial adduct, H2SiOO, formed in the triplet state (T), undergoes intersystem crossing to the more stable singlet state (S) prior to further low energy isomerisation processes leading, via a sequence of steps, ultimately to dissociation products of which the lowest energy pair are H2O + SiO. The decomposition of the intermediate cyclo-siladioxirane, via O-O bond fission, plays an important role in the overall process. The bottleneck for the overall process appears to be the T -> S process in H2SiOO. This process has a small spin orbit coupling matrix element, consistent with an estimate of its rate constant of 1 x 10(9) s(-1) obtained with the aid of RRKM theory. This interpretation preserves the idea that, as in its reactions in general, SiH2 initially reacts at the encounter rate with O-2. The low values for the secondary reaction barriers on the potential energy surface account for the lack of an observed pressure dependence. Some comparisons are drawn with the reactions of CH2 + O-2 and SiCl2 + O-2.
Resumo:
Time-resolved kinetic studies of the reaction of silylene, SiH2, generated by laser flash photolysis of phenylsilane, have been carried out to obtain rate constants for its bimolecular reaction with NO. The reaction was studied in the gas phase over the pressure range 1-100 Torr in SF6 bath gas at five temperatures in the range 299-592 K. The second-order rate constants at 10 Torr fitted the Arrhenius equation log(k/cm(3) molecule(-1) s(-1)) = (- 11.66 +/- 0.01) + (6.20 +/- 0.10 kJ mol(-1))IRT In 10 The rate constants showed a variation with pressure of a factor of ca. 2 over the available range, almost independent of temperature. The data could not be fitted by RRKM calculations to a simple third body assisted association reaction alone. However, a mechanistic model with an additional (pressure independent) side channel gave a reasonable fit to the data. Ab initio calculations at the G3 level supported a mechanism in which the initial adduct, bent H2SiNO, can ring close to form cyclo-H2SiNO, which is partially collisionally stabilized. In addition, bent H2SiNO can undergo a low barrier isomerization reaction leading, via a sequence of steps, ultimately to dissociation products of which the lowest energy pair are NH2 + SiO. The rate controlling barrier for this latter pathway is only 16 kJ mol(-1) below the energy of SiH2 + NO. This is consistent with the kinetic findings. A particular outcome of this work is that, despite the pressure dependence and the effects of the secondary barrier (in the side reaction), the initial encounter of SiH2 with NO occurs at the collision rate. Thus, silylene can be as reactive with odd electron molecules as with many even electron species. Some comparisons are drawn with the reactions of CH2 + NO and SiCl2 + NO.
Resumo:
Time-resolved kinetic studies of the reaction of dideutero-silylene, SiD2, generated by laser flash photolysis of phenylsilane-d(3), have been carried out to obtain rate constants for its bimolecular reaction with C2H2. The reaction was studied in the gas phase over the pressure range 1-100 Torr in SF6 bath gas, at five temperatures in the range 297-600 K. The second-order rate constants obtained by extrapolation to the high-pressure limits at each temperature fitted the Arrhenius equation log(k(infinity)/cm(3) molecule(-1) s(-1)) = (-10.05 +/- 0.05) + (3.43 +/- 0.36 kJ mol(-1))/RT ln 10. The rate constants were used to obtain a comprehensive set of isotope effects by comparison with earlier obtained rate constants for the reactions of SiH2 with C2H2 and C2D2. Additionally, pressure-dependent rate constants for the reaction of SiH2 with C2H2 in the presence of He (1-100 Tort) were obtained at 300, 399, and 613 K. Quantum chemical (ab initio) calculations of the SiC2H4 reaction system at the G3 level support the initial formation of silirene, which rapidly isomerizes to ethynylsilane as the major pathway. Reversible formation of vinylsilylene is also an important process. The calculations also indicate the involvement of several other intermediates, not previously suggested in the mechanism. RRKM calculations are in semiquantitative agreement with the pressure dependences and isotope effects suggested by the ab initio calculations, but residual discrepancies suggest the possible involvement of the minor reaction channel, SiH2 + C2H2 - SWPO + C2H4. The results are compared and contrasted with previous studies of this reaction system.
Resumo:
Time-resolved kinetic studies of the reaction of silylene, SiH2, with H2O and with D2O have been carried out in the gas phase at 296 and at 339 K, using laser flash photolysis to generate and monitor SiH2. The reaction was studied over the pressure range 10-200 Torr with SF6 as bath gas. The second-order rate constants obtained were pressure dependent, indicating that the reaction is a third-body assisted association process. Rate constants at 339 K were about half those at 296 K. Isotope effects, k(H)/k(D), were small averaging 1.076 0.080, suggesting no involvement of H- (or D-) atom transfer in the rate determining step. RRKM modeling was undertaken based on a transition state appropriate to formation of the expected zwitterionic donoracceptor complex, H2Si...OH2. Because the reaction is close to the low pressure (third order) region, it is difficult to be definitive about the activated complex structure. Various structures were tried, both with and without the incorporation of rotational modes, leading to values for the high-pressure limiting (i.e., true secondorder) rate constant in the range 9.5 x 10(-11) to 5 x 10(-10) cm(3) molecule' s(-1). The RRKM modeling and mechanistic interpretation is supported by ab initio quantum calculations carried out at the G2 and G3 levels. The results are compared and contrasted with the previous studies.
Resumo:
Time-resolved kinetic studies of the reaction of silylene, SiH2, generated by laser flash photolysis of phenylsilane, have been carried out to obtain rate constants for its bimolecular reaction with HCL The reaction was studied in the gas phase at 10 Torr total pressure in SF6 bath gas, at five temperatures in the range of 296-611 K. The second-order rate constants fitted the Arrhenius equation: log(k/cm(3) molecule(-1) s(-1)) = (-11.51 +/- 0.06) + (1.92 +/- 0.47 kJ mol(-1))/RTIn10 Experiments at other pressures showed that these rate constants were unaffected by pressure in the range of 10-100 Torr, but showed small decreases in value of no more than 20% ( +/- 10%) at I Toff, at both the highest and lowest temperatures. The data are consistent with formation of an initial weakly bound donor-acceptor complex, which reacts by two parallel pathways. The first is by chlorine-to-silicon H-shift to make vibrationally excited chlorosilane, SiH3Cl*, which yields HSiCl by H-2 elimination from silicon. In the second pathway, the complex proceeds via H-2 elimination (4-center process) to make chlorosilylene, HSiCl, directly. This interpretation is supported by ab initio quantum calculations carried out at the G3 level which reveal the direct H-2 elimination route for the first time. RRKM modeling predicts the approximate magnitude of the pressure effect but is unable to determine the proportions of each pathway. The experimental data agree with the only previous measurements at room temperature. Comparisons with other reactions of SiH2 are also drawn.
Resumo:
Time-resolved kinetic studies of the reaction of silylene, SiH2, generated by laser flash photolysis of both silacyclopent-3-ene and phenylsilane, have been carried out to obtain second-order rate constants for its reaction with CH3Cl. The reaction was studied in the gas phase at six temperatures in the range 294-606 K. The second-order rate constants gave a curved Arrhenius plot with a minimum value at T approximate to 370 K. The reaction showed no pressure dependence in the presence of up to 100 Torr SF6. The rate constants, however, showed a weak dependence on laser pulse energy. This suggests an interpretation requiring more than one contributing reaction pathway to SiH2 removal. Apart from a direct reaction of SiH2 with CH3Cl, reaction of SiH2 with CH3 (formed by photodissociation of CH3Cl) seems probable, with contributions of up to 30% to the rates. Ab initio calculations (G3 level) show that the initial step of reaction of SiH2 with CH3Cl is formation of a zwitterionic complex (ylid), but a high-energy barrier rules out the subsequent insertion step. On the other hand, the Cl-abstraction reaction leading to CH3 + ClSiH2 has a low barrier, and therefore, this seems the most likely candidate for the main reaction pathway of SiH2 with CH3Cl. RRKM calculations on the abstraction pathway show that this process alone cannot account for the observed temperature dependence of the rate constants. The data are discussed in light of studies of other silylene reactions with haloalkanes.
Resumo:
In this paper, we give an overview of our studies by static and time-resolved X-ray diffraction of inverse cubic phases and phase transitions in lipids. In 1, we briefly discuss the lyotropic phase behaviour of lipids, focusing attention on non-lamellar structures, and their geometric/topological relationship to fusion processes in lipid membranes. Possible pathways for transitions between different cubic phases are also outlined. In 2, we discuss the effects of hydrostatic pressure on lipid membranes and lipid phase transitions, and describe how the parameters required to predict the pressure dependence of lipid phase transition temperatures can be conveniently measured. We review some earlier results of inverse bicontinuous cubic phases from our laboratory, showing effects such as pressure-induced formation and swelling. In 3, we describe the technique of pressure-jump synchrotron X-ray diffraction. We present results that have been obtained from the lipid system 1:2 dilauroylphosphatidylcholine/lauric acid for cubic-inverse hexagonal, cubic-cubic and lamellar-cubic transitions. The rate of transition was found to increase with the amplitude of the pressure-jump and with increasing temperature. Evidence for intermediate structures occurring transiently during the transitions was also obtained. In 4, we describe an IDL-based 'AXCESS' software package being developed in our laboratory to permit batch processing and analysis of the large X-ray datasets produced by pressure-jump synchrotron experiments. In 5, we present some recent results on the fluid lamellar-Pn3m cubic phase transition of the single-chain lipid 1-monoelaidin, which we have studied both by pressure-jump and temperature-jump X-ray diffraction. Finally, in 6, we give a few indicators of future directions of this research. We anticipate that the most useful technical advance will be the development of pressure-jump apparatus on the microsecond time-scale, which will involve the use of a stack of piezoelectric pressure actuators. The pressure-jump technique is not restricted to lipid phase transitions, but can be used to study a wide range of soft matter transitions, ranging from protein unfolding and DNA unwinding and transitions, to phase transitions in thermotropic liquid crystals, surfactants and block copolymers.
Resumo:
A new primary model based on a thermodynamically consistent first-order kinetic approach was constructed to describe non-log-linear inactivation kinetics of pressure-treated bacteria. The model assumes a first-order process in which the specific inactivation rate changes inversely with the square root of time. The model gave reasonable fits to experimental data over six to seven orders of magnitude. It was also tested on 138 published data sets and provided good fits in about 70% of cases in which the shape of the curve followed the typical convex upward form. In the remainder of published examples, curves contained additional shoulder regions or extended tail regions. Curves with shoulders could be accommodated by including an additional time delay parameter and curves with tails shoulders could be accommodated by omitting points in the tail beyond the point at which survival levels remained more or less constant. The model parameters varied regularly with pressure, which may reflect a genuine mechanistic basis for the model. This property also allowed the calculation of (a) parameters analogous to the decimal reduction time D and z, the temperature increase needed to change the D value by a factor of 10, in thermal processing, and hence the processing conditions needed to attain a desired level of inactivation; and (b) the apparent thermodynamic volumes of activation associated with the lethal events. The hypothesis that inactivation rates changed as a function of the square root of time would be consistent with a diffusion-limited process.
Resumo:
"Yor" is a traditional sausage like product widely consumed in Thailand. Its textures are usually set by steaming, in this experiment ultra-high pressure was used to modify the product. Three types of hydrocolloid; carboxymethylcellulose (CMC), locust bean gum (LBG) and xanthan gum, were added to minced ostrich meat batter at concentration of 0-1% and subjected to high pressure 600 Mpa, 50 degrees C, 40 min. The treated samples were analysed for storage (G) and loss (G '') moduli by dynamic oscillatory testing as well as creep compliance for control stress measurement. Their microstructures using confocal microscopy were also examined. Hydrocolloid addition caused a significant (P < 0.05) decrease in both the G' and G '' moduli. However the loss tangent of all samples remained unchanged. Addition of hydrocolloids led to decreases in the gel network formation but appears to function as surfactant materials during the initial mixing stage as shown by the microstructure. Confocal microscopy suggested that the size of the fat droplets decreased with gum addition. The fat droplets were smallest on the addition of xanthan gum and increased in the order CMC, LBG and no added gum, respectively. Creep parameters of ostrich yors with four levels of xanthan gum addition (0.50%, 0.75%, 1.00% and 1.25%) showed an increase in the instantaneous compliance (J(0)), the retarded compliance (J(1)) and retardation time (lambda(1)) but a decrease in the viscosity (eta(0)) with increasing levels of addition. The results also suggested that the larger deformations used during creep testing might be more helpful in assessing the mechanical properties of the product than the small deformations used in oscillatory rheology. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
The combined effect of pressure and temperature on the rate of gelatinisation of starch present in Thai glutinous rice was investigated. Pressure was found to initiate gelatinisation when its value exceeded 200 MPa at ambient temperature. On the other hand, complete gelatinisation was observed at 500 and 600 MPa at 70 degrees C, when the rice was soaked in water under these conditions for 120 min. A first-order kinetic model describing the rate of gelatinisation was developed to estimate the values of the rate constants as a function of pressure and temperature in the range: 0.1-600 MPa and 20-70 degrees C. The model, based on the well-known Arrhenius and Eyring equations, assumed the form [GRAPHICS] The constants k(0), E-a, and Delta V were found to take values: 31.19 s(-1), 37.89 kJ mol(-1) and -9.98 cm(3) mol(-1), respectively. It was further noted that the extent of gelatinisation occurring at any time, temperature and pressure, could be exclusively correlated with the grain moisture content. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
We postulated that the cyclin-dependent kinase inhibitors p21 and p27 could regulate the alterations in growth potential of cardiomyocytes during left ventricular hypertrophy (LVH). LVH was induced in adult rat hearts by aortic constriction (AC) and was monitored at days 0, 1, 3, 7, 14, 21, and 42 postoperation. Relative to sham-operated controls (SH), left ventricle (LV) weight-to-body weight ratio in AC increased progressively with time without significant differences in body weight or right ventricle weight-to-body weight ratio. Atrial natriuretic factor mRNA increased significantly in AC to 287% at day 42 compared with SH (P < 0.05), whereas p21 and p27 mRNA expression in AC rats decreased significantly by 58% (P < 0.03) and 40% (P < 0.05) at day 7, respectively. p21 and p27 protein expression decreased significantly from days 3 to 21 in AC versus SH, concomitant with LV adaptive growth. Immunocytochemistry showed p21 and p27 expression in cardiomyocyte nuclei. Thus downregulation of p21 and p27 may modulate the adaptive growth of cardiomyocytes during pressure overload-induced LVH.
Resumo:
The aim of this paper is to show the feasibility of the use of functional electrical stimulation (FES) applied to the lower back muscles for pressure sores prevention in paraplegia. The hypothesis under study is that FES induces a change in the pressure distribution on the contact area during sitting. Tests were conducted on a paraplegic subject (T5), sitting on a standard wheelchair and cushion. Trunk extensors (mainly the erector spinae) were stimulated using surface electrodes placed on the skin. A pressure mapping system was used to measure the pressure on the sitting surface in four situations: (a) no stimulation; (b) stimulation on one side of the spine only; (c) stimulation on both sides, at different levels; and (d) stimulation at the same level on both sides, during pressure-relief manoeuvres. A session of prolonged stimulation was also conducted. The experimental results show that the stimulation of the erector spinae on one side of the spine can induce a trunk rotation on the sagittal plane, which causes a change in the pressure distribution. A decrease of pressure on the side opposite to the stimulation was recorded. The phenomenon is intensified when different levels of stimulation are applied to the two sides, and such change can be sustained for a considerable time (around 5 minutes). The stimulation did not induce changes during pressure-relief manoeuvres. Finally, from this research we can conclude that the stimulation of the trunk extensors can be a useful tool for pressure sores prevention, and can potentially be used in a routine for pressure sores prevention based on periodical weight shifts.