865 resultados para thermogravimetric analysis
Resumo:
Hybrid polymer networks (HPNs) based on unsaturated polyester resin (UPR) and epoxy resins were synthesized by reactive blending. The epoxy resins used were epoxidised phenolic novolac (EPN), epoxidised cresol novolac (ECN) and diglycidyl ether of bisphenol A (DGEBA). Epoxy novolacs were prepared by glycidylation of the novolacs using epichlorohydrin. The physical, mechanical, and thermal properties of the cured blends were compared with those of the control resin. Epoxy resins show good miscibility and compatibility with the UPR resin on blending and the co-cured resin showed substantial improvement in the toughness and impact resistance. Considerable enhancement of tensile strength and toughness are noticed at very low loading of EPN. Thermogravimetric analysis (TGA), dynamic mechanical analysis (DMA) and diVerential scanning calorimetry (DSC) were employed to study the thermal properties of the toughened resin. The EPN/ UPR blends showed substantial improvement in thermal stability as evident from TGA and damping data. The fracture behaviour was corroborated by scanning electron microscopy (SEM). The performance of EPN is found to be superior to other epoxy resins
Resumo:
Graphene has captured the attention of scientific community due to recently emerging high performance applications. Hence, studying its reinforcing effects on epoxy resin is a significant step. In this study, microwave exfoliated reduced graphene oxide (MERGO) was prepared from natural graphite for subsequent fabrication of epoxy nanocomposites using triethylenetetramine (TETA) as a curing agent via insitu polymerization. Thermogravimetric analysis (TGA), X-ray diffraction (XRD), Raman spectroscopy, Fourier transform infrared spectroscopy (FTIR), C13 NMR spectroscopy, X-ray photoelectron spectroscopy (XPS) and ultravioletevisible (UVevis) spectroscopy were employed to confirm the simultaneous reduction and exfoliation of graphene oxide. The reinforcing effect of MERGO on epoxy resin was explored by investigating its static mechanical properties and dynamic mechanical analysis (DMA) at MERGO loadings of 0 to 0.5 phr. The micro-structure of epoxy/MERGO nanocomposites was investigated using scanning electron microscope (SEM), transmission electron microscope (TEM) and XRD techniques. The present work reports an enhancement of 32%, 103% and 85% in tensile, impact and flexural strength respectively of epoxy by the addition of even 0.25 phr MERGO. At this loading elastic and flexural moduli also increased by 10% and 65%, respectively. Single-edge-notch three-point-Bending (SEN-TPB) fracture toughness (KIC) measurements were carried out where a 63% increase was observed by the introduction of 0.25 phr MERGO. The interfacial interactions brought about by graphene also benefited the dynamic mechanical properties to a large extent in the form of a significant enhancement in storage modulus and slightly improved glass transition temperature. Considerable improvements were also detected in dielectric properties. The epoxy nanocomposite also attained an ac conductivity of 10 5 S/m and a remarkable increase in dielectric constant. The simple and cost effective way of graphene synthesis for the fabrication of epoxy/MERGO nanocomposites may be extended to the preparation of other MERGO based polymer nanocomposites. This remarkable class of materials has thrown open enormous opportunities for developing conductive adhesives and in microelectronics
Resumo:
Pollution of water with pesticides has become a threat to the man, material and environment. The pesticides released to the environment reach the water bodies through run off. Industrial wastewater from pesticide manufacturing industries contains pesticides at higher concentration and hence a major source of water pollution. Pesticides create a lot of health and environmental hazards which include diseases like cancer, liver and kidney disorders, reproductive disorders, fatal death, birth defects etc. Conventional wastewater treatment plants based on biological treatment are not efficient to remove these compounds to the desired level. Most of the pesticides are phyto-toxic i.e., they kill the microorganism responsible for the degradation and are recalcitrant in nature. Advanced oxidation process (AOP) is a class of oxidation techniques where hydroxyl radicals are employed for oxidation of pollutants. AOPs have the ability to totally mineralise the organic pollutants to CO2 and water. Different methods are employed for the generation of hydroxyl radicals in AOP systems. Acetamiprid is a neonicotinoid insecticide widely used to control sucking type insects on crops such as leafy vegetables, citrus fruits, pome fruits, grapes, cotton, ornamental flowers. It is now recommended as a substitute for organophosphorous pesticides. Since its use is increasing, its presence is increasingly found in the environment. It has high water solubility and is not easily biodegradable. It has the potential to pollute surface and ground waters. Here, the use of AOPs for the removal of acetamiprid from wastewater has been investigated. Five methods were selected for the study based on literature survey and preliminary experiments conducted. Fenton process, UV treatment, UV/ H2O2 process, photo-Fenton and photocatalysis using TiO2 were selected for study. Undoped TiO2 and TiO2 doped with Cu and Fe were prepared by sol-gel method. Characterisation of the prepared catalysts was done by X-ray diffraction, scanning electron microscope, differential thermal analysis and thermogravimetric analysis. Influence of major operating parameters on the removal of acetamiprid has been investigated. All the experiments were designed using central compoiste design (CCD) of response surface methodology (RSM). Model equations were developed for Fenton, UV/ H2O2, photo-Fenton and photocatalysis for predicting acetamiprid removal and total organic carbon (TOC) removal for different operating conditions. Quality of the models were analysed by statistical methods. Experimental validations were also done to confirm the quality of the models. Optimum conditions obtained by experiment were verified with that obtained using response optimiser. Fenton Process is the simplest and oldest AOP where hydrogen peroxide and iron are employed for the generation of hydroxyl radicals. Influence of H2O2 and Fe2+ on the acetamiprid removal and TOC removal by Fenton process were investigated and it was found that removal increases with increase in H2O2 and Fe2+ concentration. At an initial concentration of 50 mg/L acetamiprid, 200 mg/L H2O2 and 20 mg/L Fe2+ at pH 3 was found to be optimum for acetamiprid removal. For UV treatment effect of pH was studied and it was found that pH has not much effect on the removal rate. Addition of H2O2 to UV process increased the removal rate because of the hydroxyl radical formation due to photolyis of H2O2. An H2O2 concentration of 110 mg/L at pH 6 was found to be optimum for acetamiprid removal. With photo-Fenton drastic reduction in the treatment time was observed with 10 times reduction in the amount of reagents required. H2O2 concentration of 20 mg/L and Fe2+ concentration of 2 mg/L was found to be optimum at pH 3. With TiO2 photocatalysis improvement in the removal rate was noticed compared to UV treatment. Effect of Cu and Fe doping on the photocatalytic activity under UV light was studied and it was observed that Cu doping enhanced the removal rate slightly while Fe doping has decreased the removal rate. Maximum acetamiprid removal was observed for an optimum catalyst loading of 1000 mg/L and Cu concentration of 1 wt%. It was noticed that mineralisation efficiency of the processes is low compared to acetamiprid removal efficiency. This may be due to the presence of stable intermediate compounds formed during degradation Kinetic studies were conducted for all the treatment processes and it was found that all processes follow pseudo-first order kinetics. Kinetic constants were found out from the experimental data for all the processes and half lives were calculated. The rate of reaction was in the order, photo- Fenton>UV/ H2O2>Fenton> TiO2 photocatalysis>UV. Operating cost was calculated for the processes and it was found that photo-Fenton removes the acetamiprid at lowest operating cost in lesser time. A kinetic model was developed for photo-Fenton process using the elementary reaction data and mass balance equations for the species involved in the process. Variation of acetamiprid concentration with time for different H2O2 and Fe2+ concentration at pH 3 can be found out using this model. The model was validated by comparing the simulated concentration profiles with that obtained from experiments. This study established the viability of the selected AOPs for the removal of acetamiprid from wastewater. Of the studied AOPs photo- Fenton gives the highest removal efficiency with lowest operating cost within shortest time.
Resumo:
The research in the area of geopolymer is gaining momentum during the past 20 years. Studies confirm that geopolymer concrete has good compressive strength, tensile strength, flexural strength, modulus of elasticity and durability. These properties are comparable with OPC concrete.There are many occasions where concrete is exposed to elevated temperatures like fire exposure from thermal processor, exposure from furnaces, nuclear exposure, etc.. In such cases, understanding of the behaviour of concrete and structural members exposed to elevated temperatures is vital. Even though many research reports are available about the behaviour of OPC concrete at elevated temperatures, there is limited information available about the behaviour of geopolymer concrete after exposure to elevated temperatures. A preliminary study was carried out for the selection of a mix proportion. The important variable considered in the present study include alkali/fly ash ratio, percentage of total aggregate content, fine aggregate to total aggregate ratio, molarity of sodium hydroxide, sodium silicate to sodium hydroxide ratio, curing temperature and curing period. Influence of different variables on engineering properties of geopolymer concrete was investigated. The study on interface shear strength of reinforced and unreinforced geopolymer concrete as well as OPC concrete was also carried out. Engineering properties of fly ash based geopolymer concrete after exposure to elevated temperatures (ambient to 800 °C) were studied and the corresponding results were compared with those of conventional concrete. Scanning Electron Microscope analysis, Fourier Transform Infrared analysis, X-ray powder Diffractometer analysis and Thermogravimetric analysis of geopolymer mortar or paste at ambient temperature and after exposure to elevated temperature were also carried out in the present research work. Experimental study was conducted on geopolymer concrete beams after exposure to elevated temperatures (ambient to 800 °C). Load deflection characteristics, ductility and moment-curvature behaviour of the geopolymer concrete beams after exposure to elevated temperatures were investigated. Based on the present study, major conclusions derived could be summarized as follows. There is a definite proportion for various ingredients to achieve maximum strength properties. Geopolymer concrete with total aggregate content of 70% by volume, ratio of fine aggregate to total aggregate of 0.35, NaOH molarity 10, Na2SiO3/NaOH ratio of 2.5 and alkali to fly ash ratio of 0.55 gave maximum compressive strength in the present study. An early strength development in geopolymer concrete could be achieved by the proper selection of curing temperature and the period of curing. With 24 hours of curing at 100 °C, 96.4% of the 28th day cube compressive strength could be achieved in 7 days in the present study. The interface shear strength of geopolymer concrete is lower to that of OPC concrete. Compared to OPC concrete, a reduction in the interface shear strength by 33% and 29% was observed for unreinforced and reinforced geopolymer specimens respectively. The interface shear strength of geopolymer concrete is lower than ordinary Portland cement concrete. The interface shear strength of geopolymer concrete can be approximately estimated as 50% of the value obtained based on the available equations for the calculation of interface shear strength of ordinary portland cement concrete (method used in Mattock and ACI). Fly ash based geopolymer concrete undergoes a high rate of strength loss (compressive strength, tensile strength and modulus of elasticity) during its early heating period (up to 200 °C) compared to OPC concrete. At a temperature exposure beyond 600 °C, the unreacted crystalline materials in geopolymer concrete get transformed into amorphous state and undergo polymerization. As a result, there is no further strength loss (compressive strength, tensile strength and modulus of elasticity) in geopolymer concrete, whereas, OPC concrete continues to lose its strength properties at a faster rate beyond a temperature exposure of 600 °C. At present no equation is available to predict the strength properties of geopolymer concrete after exposure to elevated temperatures. Based on the study carried out, new equations have been proposed to predict the residual strengths (cube compressive strength, split tensile strength and modulus of elasticity) of geopolymer concrete after exposure to elevated temperatures (upto 800 °C). These equations could be used for material modelling until better refined equations are available. Compared to OPC concrete, geopolymer concrete shows better resistance against surface cracking when exposed to elevated temperatures. In the present study, while OPC concrete started developing cracks at 400 °C, geopolymer concrete did not show any visible cracks up to 600 °C and developed only minor cracks at an exposure temperatureof 800 °C. Geopolymer concrete beams develop crack at an early load stages if they are exposed to elevated temperatures. Even though the material strength of the geopolymer concrete does not decrease beyond 600 °C, the flexural strength of corresponding beam reduces rapidly after 600 °C temperature exposure, primarily due to the rapid loss of the strength of steel. With increase in temperature, the curvature at yield point of geopolymer concrete beam increases and thereby the ductility reduces. In the present study, compared to the ductility at ambient temperature, the ductility of geopolymer concrete beams reduces by 63.8% at 800 °C temperature exposure. Appropriate equations have been proposed to predict the service load crack width of geopolymer concrete beam exposed to elevated temperatures. These equations could be used to limit the service load on geopolymer concrete beams exposed to elevated temperatures (up to 800 °C) for a predefined crack width (between 0.1mm and 0.3 mm) or vice versa. The moment-curvature relationship of geopolymer concrete beams at ambient temperature is similar to that of RCC beams and this could be predicted using strain compatibility approach Once exposed to an elevated temperature, the strain compatibility approach underestimates the curvature of geopolymer concrete beams between the first cracking and yielding point.
Resumo:
Spiro-starburst-structures with symmetric globular structures in forms of first and second generations that readily form stable amorphous glasses have been synthesized and then characterised in this work. During the synthesis of these materials, possibilities of the extension of the chains of the phenyl rings in 2,2’,7 and 7’-positions of the central core of the spirobifluorene as well as the 2’,7 and 7’-positions of the terminal spirobifluorene units of the spiro-starburst-structures have been investigated so that solubilities and morphologies of the compounds are not negatively influenced. Their morphological properties have been explored by recording their decomposition temperature and glass transition temperature. These compounds possessing two perpendicular arrangement of the two molecular halves show high glass transition temperature (Tg), which is one of the most important parameter indicating the stability of the amorphous state of the material for optoelectronic devices like organic light emitting diodes. Within the species of second generation compounds, for example, 4-spiro3 shows the highest Tg (330 °C) and the highest branching degree. When one [4B(SBF)SBF-SBF 84] or two [4SBFSBF-SBF 79] terminal spirobifluorene units are removed, the Tg decreases to 318 °C and 307 °C respectively. Photo absorption and fluorescence spectra and cyclic voltammetry measurements are taken in account to characterize the optoelectronic properties of the compounds. Spiro-starburst-structures emit radiation in the blue region of the visible spectrum. The peak maxima of absorption and emission spectra are observed to be at higher wavelength in the molecules with longer chromophore chains than in the molecules with shorter chromophore chains. Excitation spectra are monitored with their emission peak maxima. The increasing absorbing species in molecule leads to increasing molar extinction coefficient. In the case of 4B(TP)SBF-SBF 53 and 4B(SBF)SBF-SBF 84, the greater values of the molar extinction coefficients (43*104 and 44*104 L mol-1 cm-1 respectively) are the evidences of the presence of four times octiphenyl conjugation rings and eight times terminal fluorene units respectively. The optical properties of solid states of these compounds in the form of thin film indicate that the intermolecular interaction and aggregation of individual molecules in neat amorphous films are effectively hindered by their sterically demanding structures. Accordingly, in solid state, they behave like isolated molecules in highly dilute solution. Cyclic voltammetry measurements of these compounds show electrochemically reversibility and stability. Furthermore, the zeolitic nature (host-guest) of the molecular sieve of the synthesized spiro-starburst-structures has been analysed by thermogravimetric analysis method.
Resumo:
In der vorliegenden Arbeit wurden neue symmetrische Spiro-p-oligophenyle der allgemeinen Form Spiro-o-Φ[n,n] mit der Gesamtkettenlänge o=2n+2 Phenylringen (o > 10) und der Zahl n der Phenylringe in den p-Oligophenylsubstituenten am Spirobifluorenkern, dargestellt. Neben den symmetrischen Verbindungen wurden erstmals auch unsymmetrische Spiro-p-oligophenyle der allgemeinen Form Spiro-o-Φ[n,m] mit o=n+m+2 (o = 3-7) und n ≠ m synthetisiert. Aufgrund der sehr geringen Löslichkeit der größeren Verbindungen wurden löslichkeitssteigernde Substituenten an den endständigen Phenylringen angebracht. Bei den Verbindungen, die mit Trimethylsilyl-Gruppen (TMS-) in den endständigen meta-Positionen „3“ und „5“ substituiert wurden, konnte die Löslichkeit um mehrere Größenordnungen gesteigert werden, sodass die Darstellung der symmetrischen Verbindungen bis zu einer Kettenlänge von 16 Phenylringen möglich wurde. Nach erfolgreicher Synthese und Aufreinigung wurden die TMS-Gruppen wieder entfernt und die erhaltenen, unsubstituierten Verbindungen charakterisiert. Zusätzlich wurden auch die TMS-Derivate untersucht. Zur Charakterisierung zählten neben der Reinheits- und Strukturanalytik unter anderem auch spektroskopische (UV/Vis-Absorption, Fluoreszenz, Fluoreszenzquantenausbeute), elektrochemische (Cyclovoltammetrie) und thermische (Thermogravimetrie, Dynamische Differenzkalorimetrie) Untersuchungen. Hier wurde unter anderem der Einfluss der Kettenlänge und der Position der Spiroverknüpfung auf isomere Verbindungen gleicher Kettenlänge untersucht. Bei den spektroskopischen Messungen konnte eine Konvergenz der längstwelligen Absorptionsbanden, bzw. kürzestwelligen Fluoreszenzbanden mit zunehmender Kettenlänge beobachtet werden. Die effektive Konjugationslänge konnte so aus experimentellen Daten bestimmt werden zu 12 Phenylringen in der Absorption und 14 Phenylringen in der Fluoreszenz. Bei den Isomeren gleicher Kettenlänge zeigte sich in der Absorption eine hypsochrome Verschiebung der Absorptionsmaxima mit zunehmender Verschiebung der Spiroverknüpfung zum Kettenende hin, während die Position der Spiroverknüpfung keinen messbaren Einfluss auf die Verschiebung der Fluoreszenzbanden hatte. Die Substitution mit TMS in den meta-Positionen zeigte keinen messbaren Einfluss auf die Absorptions- bzw. Fluoreszenzbanden. Die elektrochemischen Untersuchungen zeigten mit zunehmender Kettenlänge eine erleichterte Oxidation und Reduktion, während bei Isomeren gleicher Kettenlänge die Oxidation mit Verschiebung der Spiroverknüpfung zum Kettenende hin erschwert und die Reduktion erleichtert war. Die thermogravimetrischen Analysen (TGA) zeigten eine außerordentlich hohe thermische Stabilität (5% Massenabnahme unter Schutzgas) der Spiro-p-oligophenyle von Td,5% = 474°C bei Spiro-5Φ[1,2] bis 570°C bei Spiro 8Φ[3,3]. Ebenso blieben hohe Rückstandsmassen unter Schutzgas bei 850°C zurück, wie das Beispiel Spiro 8Φ[3,3] mit 68% zeigt. Die Verbindungen zeigten hohe Schmelzpunkte (max. 496°C bei Spiro-6Φ[0,4]) und Glasübergangstemperaturen (max. 434°C bei p-TMS-Spiro-8Φ[3,3]). Viele der Verbindungen, besonders die in den meta-Positionen TMS-substituierten Verbindungen, bildeten stabile amorphe Gläser.
Resumo:
Three new polymeric complexes [Cd(hmt)(SCN)(2)(H2O)(2)](n) (1), [Cd-3(mu(2)-hmt)(2)(SCN)(6)(H2O)(2)](n) (2), and [Cd-2(hmt)(2)(tP)(2)(H2O)(6)](n) (3) [hmt = hexamethylenetetramine, tp = terephthalate] have been synthesized and characterized by single crystal X-ray diffraction. Both the compounds 1 and 2 are 1-D polymers where Cd units are linked by double end-to-end thiocyanate bridges but in 2 the chain is wider containing three cadmium atoms instead of one as found in 1. In both compounds the coordination environment around cadmium atom is distorted octahedral. Compound 3 is a three-dimensional polymer having water-filled microporous channels. Both tp and brut are mu(2)-bridged. One of the acid groups of tp is coordinated in chelating bidentate and the other in monodentate fashion. Half of its Cd atoms are hexa-coordinated and the rest are hepta-coordinated. Thermogravimetric analysis and X-ray diffraction study of 3 show that its framework remains intact upon removal of water molecules. The flexibility of coordination number around cadmium atoms (six or seven) probably plays an important role in establishing the rigidity of the framework. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
tMelt-polycondensation of succinic acid anhydride with oxazoline-based diol monomers gave hyper-branched polymers with carboxylicacids terminal groups.1H NMR and quantitative13C NMRspectroscopy coupled with DEPT-13513C NMR experiment showed high degrees of branching (over 60%).Esterification of the acid end groups by addition of citronellol at 160◦C produced novel white spirit solubleresins which were characterized by Fourier transform-infrared (FTIR) spectroscopy, gel permeation chro-matography (GPC), differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). Blendsof the new hyperbranched materials with commercial alkyd resins resulted in a dramatic, concentrationdependent drop in viscosity. Solvent-borne coatings were formulated containing the hyperbranchedpolymers. Dynamic mechanical analysis studies revealed that the air drying rates of the new coatingsystems were enhanced compared with identical formulations containing only commercial alkyd resins.
Resumo:
The solvothermal synthesis and characterisation of [C6H16N2][GaS2]2 (1), [C6H16N2][Ga2Se3(Se2)] (2), and mixed-metal phases with composition [C6H16N2][Ga2–xInxSe3(Se2)] (0 < x < 2)(3–5), is described. These materials have been characterised by single-crystal and powder X-ray diffraction, thermogravimetric analysis and UV/Vis diffuse reflectance spectroscopy. The materials contain one-dimensional anionic chains. In 1, these chains consist of edge-linked GaS4 tetrahedra, whilst in 2–5, the chains contain perselenide (Se2)2– units and comprise alternating four-membered [M2Se2] and five-membered [M2Se3] rings (where M = Ga, In). Compounds 3–5 represent the first examples of ternary mixed-metal [M2Se3(Se2)]2– chains.
Resumo:
The skutterudites YbxFe2Ni2Sb12 (0≤x≤0.4) have been prepared by solid-state reaction and characterised by powder X-ray diffraction. The compounds crystallise in the cubic space group Im View the MathML source3¯ (a≈9.1 Å) with Yb atoms partially filling the voids in the skutterudite framework. A neutron time-of-flight diffraction experiment for Fe2Ni2Sb12 confirms the disorder of Fe and Ni atoms on the transition-metal site. Electrical resistivity, Seebeck coefficient and thermal conductivity measurements indicate that the thermoelectric performance of the skutterudites shows a marked dependence on the Yb content. Magnetic measurements over the temperature range 2≤T/K≤300 show paramagnetic behaviour for all compounds. Decomposition studies under an oxidising atmosphere at elevated temperatures have also been carried out by thermogravimetric analysis.
Resumo:
The family of materials Yb x Fe2 Ni 2Sb12 (0 ≤ x ≤ 0.4) has been prepared by solid-state synthesis from the pure elements and characterized by powder X-ray diffraction. These materials crystallize in the skutterudite structure, with the framework voids partially filled with Yb atoms. Electrical resistivity, Seebeck coefficient and thermal conductivity measurements have been performed on hot-pressed samples, and indicate that the thermoelectric performance is significantly improved by increasing the Yb content. The decomposition of the compounds under oxidizing atmosphere at elevated temperatures has also been studied by thermogravimetric analysis. The physical properties and thermal stability of the new compounds are further discussed in comparison with those of the reported isostructural and isoelectronic Yb x Co4Sb12 (0 ≤ x ≤ 0.19).
Resumo:
A new organically templated indium selenide, [C6H16N2][In2Se3(Se2)], has been prepared hydrothermally from the reaction of indium, selenium and trans-1,4-diaminocyclohexane in water at 170 °C. This material was characterised by single-crystal and powder X-ray diffraction, thermogravimetric analysis, UV–vis diffuse reflectance spectroscopy, FT-IR and elemental analysis. The compound crystallises in the monoclinic space group C2/c (a=12.0221(16) Å, b=11.2498(15) Å, c=12.8470(17) Å, β=110.514(6)°). The crystal structure of [C6H16N2][In2Se3(Se2)] contains anionic chains of stoichiometry [In2Se3(Se2)]2−, which are aligned parallel to the [1 0 1] direction, and separated by diprotonated trans-1,4-diaminocyclohexane cations. The [In2Se3(Se2)]2− chains, which consist of alternating four-membered [In2Se2] and five-membered [In2Se3] rings, contain perselenide (Se2)2− units. UV–vis diffuse reflectance spectroscopy indicates that [C6H16N2][In2Se3(Se2)] has a band gap of 2.23(1) eV
Resumo:
Bornite, Cu5FeS4, is a naturally-occuring mineral with an ultralow thermal conductivity and potential for thermoelectric power generation. We describe here a new, easy and scalable route to synthesise bornite, together with the thermoelectric behaviour of manganese-substituted derivatives, Cu5Fe1-xMnxS4 (0 ≤ x ≤ 0.10). The electrical and thermal transport properties of Cu5Fe1-xMnxS4 (0 ≤ x ≤ 0.10), which are p-type semiconductors, were measured from room temperature to 573 K. The stability of bornite was investigated by thermogravimetric analysis under inert and oxidising atmospheres. Repeated measurements of the electrical transport properties confirm that bornite is stable up to 580 K under an inert atmosphere, while heating to 890 K results in rapid degradation. Ball milling leads to a substantial improvement in the thermoelectric figure of merit of unsusbtituted bornite (ZT = 0.55 at 543 K), when compared to bornite prepared by conventional high-temperature synthesis (ZT < 0.3 at 543 K). Manganese-substituted samples have a ZT comparable to that of unsubstituted bornite.
Resumo:
An efficient reddish orange emission MgSrAl(10)O(17):Sm(3+) phosphor was prepared by the combustion method. The phosphor has been characterized by X-ray diffraction, scanning electron microscopy, thermogravimetric analysis measurements. Photoluminescence spectrum revealed that samarium ions are present in trivalent oxidation states. The phosphor exhibits two thermally stimulated luminescence (TSL) peaks at 210 degrees C and 450 degrees C. Electron spin resonance studies were carried out to identify the defect centres responsible for the TSL process in MgSrAl(10)O(17):Sm(3+) phosphor. Three defect centres have been identified in irradiated phosphor and these centres are tentatively assigned to an O(-) ion and F(+) centres. O(-) ion (hole centre) correlates with the 210 degrees C TSL peak while one of the F+ centres (electron centre) appears to relate to the 450 degrees C TSL peak. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Thermally stable elastomeric composites based on ethylene-propylene-diene monomer (EPDM) and conducting polymer-modified carbon black (CPMCB) additives were produced by casting and crosslinked by compression molding. CPMCB represent a novel thermally stable conductive compound made via ""in situ"" deposition of intrinsically conducting polymers (ICP) such as polyaniline or polypyrrole on carbon black particles. Thermogravimetric analysis showed that the composites are thermally stable with no appreciable degradation at ca. 300 degrees C. Incorporating CPMCB has been found to be advantageous to the processing of composites, as the presence of ICP lead to a better distribution of the filler within the rubber matrix, as confirmed by morphological analysis. These materials have a percolation threshold range of 5-10 phr depending on the formulation and electrical dc conductivity values in the range of 1 x 10(-3) to 1 x 10(-2) S cm(-1) above the percolation threshold. A less pronounced reinforcing effect was observed in composites produced with ICP-modified additives in relation to those produced only with carbon black. The results obtained in this study show the feasibility of this method for producing stable, electrically conducting composites with elastomeric characteristics. POLYM. COMPOS., 30:897-906, 2009. (C) 2008 Society of Plastics Engineers