901 resultados para the carpet model
Resumo:
The leading-twist pion-distribution amplitude is obtained at a low normalization scale of order ρc (inverse average size of an instanton). Pion dynamics, consistent with gauge invariance and low-energy theorems, is considered within the instanton vacuum model. The results are QCD-evolved to higher momentum-transfer values and are in agreement with recent data from CLEO on the pion transition form factor. It is also shown that some previous calculations violate the axial Ward-Takahashi identity. © 2001 MAIK Nauka/Interperiodica.
Resumo:
A branch and bound algorithm is proposed to solve the [image omitted]-norm model reduction problem for continuous and discrete-time linear systems, with convergence to the global optimum in a finite time. The lower and upper bounds in the optimization procedure are described by linear matrix inequalities (LMI). Also proposed are two methods with which to reduce the convergence time of the branch and bound algorithm: the first one uses the Hankel singular values as a sufficient condition to stop the algorithm, providing to the method a fast convergence to the global optimum. The second one assumes that the reduced model is in the controllable or observable canonical form. The [image omitted]-norm of the error between the original model and the reduced model is considered. Examples illustrate the application of the proposed method.
Resumo:
We study the Schwinger Model on the null-plane using the Dirac method for constrained systems. The fermion field is analyzed using the natural null-plane projections coming from the γ-algebra and it is shown that the fermionic sector of the Schwinger Model has only second class constraints. However, the first class constraints are exclusively of the bosonic sector. Finally, we establish the graded Lie algebra between the dynamical variables, via generalized Dirac bracket in the null-plane gauge, which is consistent with every constraint of the theory. © World Scientific Publishing Company.
Resumo:
The GPS observables are subject to several errors. Among them, the systematic ones have great impact, because they degrade the accuracy of the accomplished positioning. These errors are those related, mainly, to GPS satellites orbits, multipath and atmospheric effects. Lately, a method has been suggested to mitigate these errors: the semiparametric model and the penalised least squares technique (PLS). In this method, the errors are modeled as functions varying smoothly in time. It is like to change the stochastic model, in which the errors functions are incorporated, the results obtained are similar to those in which the functional model is changed. As a result, the ambiguities and the station coordinates are estimated with better reliability and accuracy than the conventional least square method (CLS). In general, the solution requires a shorter data interval, minimizing costs. The method performance was analyzed in two experiments, using data from single frequency receivers. The first one was accomplished with a short baseline, where the main error was the multipath. In the second experiment, a baseline of 102 km was used. In this case, the predominant errors were due to the ionosphere and troposphere refraction. In the first experiment, using 5 minutes of data collection, the largest coordinates discrepancies in relation to the ground truth reached 1.6 cm and 3.3 cm in h coordinate for PLS and the CLS, respectively, in the second one, also using 5 minutes of data, the discrepancies were 27 cm in h for the PLS and 175 cm in h for the CLS. In these tests, it was also possible to verify a considerable improvement in the ambiguities resolution using the PLS in relation to the CLS, with a reduced data collection time interval. © Springer-Verlag Berlin Heidelberg 2007.
Resumo:
The objective of this paper is to utilize the SIPOC, flowchart and IDEF0 modeling techniques combined to elaborate the conceptual model of a simulation project. It is intended to identify the contribution of these techniques in the elaboration of the computational model. To illustrate such application, a practical case of a high-end technology enterprise is presented. The paper concludes that the proposed approach eases the elaboration of the computational model. © 2008 IEEE.
Resumo:
We discuss the thermal dependence of the zero-bias electrical conductance for a quantum dot embedded in a quantum wire, or side-coupled to it. In the Kondo regime, the temperature-dependent conductances map linearly onto the conductance for the symmetric Anderson Hamiltonian. The mapping fits accurately numerical renormalization-group results for the conductance in each geometry. In the side-coupled geometry, the conductance is markedly affected by a gate potential applied to the wire; in the embedded geometry, it is not. © 2010 IOP Publishing Ltd.
Resumo:
Includes Bibliography
Resumo:
We introduce a new method to improve Markov maps by means of a Bayesian approach. The method starts from an initial map model, wherefrom a likelihood function is defined which is regulated by a temperature-like parameter. Then, the new constraints are added by the use of Bayes rule in the prior distribution. We applied the method to the logistic map of population growth of a single species. We show that the population size is limited for all ranges of parameters, allowing thus to overcome difficulties in interpretation of the concept of carrying capacity known as the Levins paradox. © Published under licence by IOP Publishing Ltd.
Resumo:
We present the results of the combination of searches for the standard model Higgs boson produced in association with a W or Z boson and decaying into bb̄ using the data sample collected with the D0 detector in pp̄ collisions at √s=1.96TeV at the Fermilab Tevatron Collider. We derive 95% C.L. upper limits on the Higgs boson cross section relative to the standard model prediction in the mass range 100GeV≤M H≤150GeV, and we exclude Higgs bosons with masses smaller than 102 GeV at the 95% C.L. In the mass range 120GeV≤M H≤145GeV, the data exhibit an excess above the background prediction with a global significance of 1.5 standard deviations, consistent with the expectation in the presence of a standard model Higgs boson. © 2012 American Physical Society.
Resumo:
We present a search for the standard model (SM) Higgs boson produced in association with a Z boson in 9.7fb -1 of pp̄ collisions collected with the D0 detector at the Fermilab Tevatron Collider at √s=1.96TeV. Selected events contain one reconstructed Z→e +e - or Z→μ +μ - candidate and at least two jets, including at least one jet identified as likely to contain a b quark. To validate the search procedure, we also measure the cross section for ZZ production in the same final state. It is found to be consistent with its SM prediction. We set upper limits on the ZH production cross section times branching ratio for H→bb̄ at the 95% C.L. for Higgs boson masses 90≤M H≤150GeV. The observed (expected) limit for M H=125GeV is 7.1 (5.1) times the SM cross section. © 2012 American Physical Society.
Resumo:
We present a search for the standard model Higgs boson in final states with a charged lepton (electron or muon), missing transverse energy, and two or three jets, at least one of which is identified as a b-quark jet. The search is primarily sensitive to WH→ νbb̄ production and uses data corresponding to 9.7fb -1 of integrated luminosity collected with the D0 detector at the Fermilab Tevatron pp̄ Collider at √s=1.96TeV. We observe agreement between the data and the expected background. For a Higgs boson mass of 125 GeV, we set a 95% C.L. upper limit on the production of a standard model Higgs boson of 5.2×σ SM, where σ SM is the standard model Higgs boson production cross section, while the expected limit is 4.7×σ SM. © 2012 American Physical Society.
Resumo:
Analiza el sistema sociopolítico de Suecia.
Resumo:
Includes bibliography
Resumo:
Includes bibliography
Resumo:
Includes bibliography