946 resultados para temporal visualization techniques
Resumo:
Subsidence related to multiple natural and human-induced processes affects an increasing number of areas worldwide. Although this phenomenon may involve surface deformation with 3D displacement components, negative vertical movement, either progressive or episodic, tends to dominate. Over the last decades, differential SAR interferometry (DInSAR) has become a very useful remote sensing tool for accurately measuring the spatial and temporal evolution of surface displacements over broad areas. This work discusses the main advantages and limitations of addressing active subsidence phenomena by means of DInSAR techniques from an end-user point of view. Special attention is paid to the spatial and temporal resolution, the precision of the measurements, and the usefulness of the data. The presented analysis is focused on DInSAR results exploitation of various ground subsidence phenomena (groundwater withdrawal, soil compaction, mining subsidence, evaporite dissolution subsidence, and volcanic deformation) with different displacement patterns in a selection of subsidence areas in Spain. Finally, a cost comparative study is performed for the different techniques applied.
Resumo:
Tese de mestrado em Matemática Aplicada à Economia e Gestão, apresentada à Universidade de Lisboa, através da Faculdade de Ciências, 2016
Resumo:
BACKGROUND INFORMATION The Plasmodium parasite, during its life cycle, undergoes three phases of asexual reproduction, these being repeated rounds of erythrocytic schizogony, sporogony within oocysts on the mosquito midgut wall and exo-erythrocytic schizogony within the hepatocyte. During each phase of asexual reproduction, the parasite must ensure that every new daughter cell contains an apicoplast, as this organelle cannot be formed de novo and is essential for parasite survival. To date, studies visualizing the apicoplast in live Plasmodium parasites have been restricted to the blood stages of Plasmodium falciparum. RESULTS In the present study, we have generated Plasmodium berghei parasites in which GFP (green fluorescent protein) is targeted to the apicoplast using the specific targeting sequence of ACP (acyl carrier protein), which has allowed us to visualize this organelle in live Plasmodium parasites. During each phase of asexual reproduction, the apicoplast becomes highly branched, but remains as a single organelle until the completion of nuclear division, whereupon it divides and is rapidly segregated into newly forming daughter cells. We have shown that the antimicrobial agents azithromycin, clindamycin and doxycycline block development of the apicoplast during exo-erythrocytic schizogony in vitro, leading to impaired parasite maturation. CONCLUSIONS Using a range of powerful live microscopy techniques, we show for the first time the development of a Plasmodium organelle through the entire life cycle of the parasite. Evidence is provided that interference with the development of the Plasmodium apicoplast results in the failure to produce red-blood-cell-infective merozoites.
Resumo:
The master thesis presents methods for intellectual analysis and visualization 3D EKG in order to increase the efficiency of ECG analysis by extracting additional data. Visualization is presented as part of the signal analysis tasks considered imaging techniques and their mathematical description. Have been developed algorithms for calculating and visualizing the signal attributes are described using mathematical methods and tools for mining signal. The model of patterns searching for comparison purposes of accuracy of methods was constructed, problems of a clustering and classification of data are solved, the program of visualization of data is also developed. This approach gives the largest accuracy in a task of the intellectual analysis that is confirmed in this work. Considered visualization and analysis techniques are also applicable to the multi-dimensional signals of a different kind.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-06
Resumo:
In broader catchment scale investigations, there is a need to understand and ultimately exploit the spatial variation of agricultural crops for an improved economic return. In many instances, this spatial variation is temporally unstable and may be different for various crop attributes and crop species. In the Australian sugar industry, the opportunity arose to evaluate the performance of 231 farms in the Tully Mill area in far north Queensland using production information on cane yield (t/ha) and CCS ( a fresh weight measure of sucrose content in the cane) accumulated over a 12-year period. Such an arrangement of data can be expressed as a 3-way array where a farm x attribute x year matrix can be evaluated and interactions considered. Two multivariate techniques, the 3-way mixture method of clustering and the 3-mode principal component analysis, were employed to identify meaningful relationships between farms that performed similarly for both cane yield and CCS. In this context, farm has a spatial component and the aim of this analysis was to determine if systematic patterns in farm performance expressed by cane yield and CCS persisted over time. There was no spatial relationship between cane yield and CCS. However, the analysis revealed that the relationship between farms was remarkably stable from one year to the next for both attributes and there was some spatial aggregation of farm performance in parts of the mill area. This finding is important, since temporally consistent spatial variation may be exploited to improve regional production. Alternatively, the putative causes of the spatial variation may be explored to enhance the understanding of sugarcane production in the wet tropics of Australia.
Resumo:
A biologically realizable, unsupervised learning rule is described for the online extraction of object features, suitable for solving a range of object recognition tasks. Alterations to the basic learning rule are proposed which allow the rule to better suit the parameters of a given input space. One negative consequence of such modifications is the potential for learning instability. The criteria for such instability are modeled using digital filtering techniques and predicted regions of stability and instability tested. The result is a family of learning rules which can be tailored to the specific environment, improving both convergence times and accuracy over the standard learning rule, while simultaneously insuring learning stability.
Resumo:
Predatory insects and spiders are key elements of integrated pest management (IPM) programmes in agricultural crops such as cotton. Management decisions in IPM programmes should to be based on a reliable and efficient method for counting both predators and pests. Knowledge of the temporal constraints that influence sampling is required because arthropod abundance estimates are likely to vary over a growing season and within a day. Few studies have adequately quantified this effect using the beat sheet, a potentially important sampling method. We compared the commonly used methods of suction and visual sampling to the beat sheet, with reference to an absolute cage clamp method for determining the abundance of various arthropod taxa over 5 weeks. There were significantly more entomophagous arthropods recorded using the beat sheet and cage clamp methods than by using suction or visual sampling, and these differences were more pronounced as the plants grew. In a second trial, relative estimates of entomophagous and phytophagous arthropod abundance were made using beat sheet samples collected over a day. Beat sheet estimates of the abundance of only eight of the 43 taxa examined were found to vary significantly over a day. Beat sheet sampling is recommended in further studies of arthropod abundance in cotton, but researchers and pest management advisors should bear in mind the time of season and time of day effects.
Resumo:
A major task of traditional temporal event sequence mining is to find all frequent event patterns from a long temporal sequence. In many real applications, however, events are often grouped into different types, and not all types are of equal importance. In this paper, we consider the problem of efficient mining of temporal event sequences which lead to an instance of a specific type of event. Temporal constraints are used to ensure sensibility of the mining results. We will first generalise and formalise the problem of event-oriented temporal sequence data mining. After discussing some unique issues in this new problem, we give a set of criteria, which are adapted from traditional data mining techniques, to measure the quality of patterns to be discovered. Finally we present an algorithm to discover potentially interesting patterns.
Resumo:
The data available during the drug discovery process is vast in amount and diverse in nature. To gain useful information from such data, an effective visualisation tool is required. To provide better visualisation facilities to the domain experts (screening scientist, biologist, chemist, etc.),we developed a software which is based on recently developed principled visualisation algorithms such as Generative Topographic Mapping (GTM) and Hierarchical Generative Topographic Mapping (HGTM). The software also supports conventional visualisation techniques such as Principal Component Analysis, NeuroScale, PhiVis, and Locally Linear Embedding (LLE). The software also provides global and local regression facilities . It supports regression algorithms such as Multilayer Perceptron (MLP), Radial Basis Functions network (RBF), Generalised Linear Models (GLM), Mixture of Experts (MoE), and newly developed Guided Mixture of Experts (GME). This user manual gives an overview of the purpose of the software tool, highlights some of the issues to be taken care while creating a new model, and provides information about how to install & use the tool. The user manual does not require the readers to have familiarity with the algorithms it implements. Basic computing skills are enough to operate the software.
Resumo:
Today, the data available to tackle many scientific challenges is vast in quantity and diverse in nature. The exploration of heterogeneous information spaces requires suitable mining algorithms as well as effective visual interfaces. miniDVMS v1.8 provides a flexible visual data mining framework which combines advanced projection algorithms developed in the machine learning domain and visual techniques developed in the information visualisation domain. The advantage of this interface is that the user is directly involved in the data mining process. Principled projection methods, such as generative topographic mapping (GTM) and hierarchical GTM (HGTM), are integrated with powerful visual techniques, such as magnification factors, directional curvatures, parallel coordinates, and user interaction facilities, to provide this integrated visual data mining framework. The software also supports conventional visualisation techniques such as principal component analysis (PCA), Neuroscale, and PhiVis. This user manual gives an overview of the purpose of the software tool, highlights some of the issues to be taken care while creating a new model, and provides information about how to install and use the tool. The user manual does not require the readers to have familiarity with the algorithms it implements. Basic computing skills are enough to operate the software.
Resumo:
Data visualization algorithms and feature selection techniques are both widely used in bioinformatics but as distinct analytical approaches. Until now there has been no method of measuring feature saliency while training a data visualization model. We derive a generative topographic mapping (GTM) based data visualization approach which estimates feature saliency simultaneously with the training of the visualization model. The approach not only provides a better projection by modeling irrelevant features with a separate noise model but also gives feature saliency values which help the user to assess the significance of each feature. We compare the quality of projection obtained using the new approach with the projections from traditional GTM and self-organizing maps (SOM) algorithms. The results obtained on a synthetic and a real-life chemoinformatics dataset demonstrate that the proposed approach successfully identifies feature significance and provides coherent (compact) projections. © 2006 IEEE.
Resumo:
This thesis begins by providing a review of techniques for interpreting the thermal response at the earth's surface acquired using remote sensing technology. Historic limitations in the precision with which imagery acquired from airborne platforms can be geometrically corrected and co-registered has meant that relatively little work has been carried out examining the diurnal variation of surface temperature over wide regions. Although emerging remote sensing systems provide the potential to register temporal image data within satisfactory levels of accuracy, this technology is still not widely available and does not address the issue of historic data sets which cannot be rectified using conventional parametric approaches. In overcoming these problems, the second part of this thesis describes the development of an alternative approach for rectifying airborne line-scanned imagery. The underlying assumption that scan lines within the imagery are straight greatly reduces the number of ground control points required to describe the image geometry. Furthermore, the use of pattern matching procedures to identify geometric disparities between raw line-scanned imagery and corresponding aerial photography enables the correction procedure to be almost fully automated. By reconstructing the raw image data on a truly line-by-line basis, it is possible to register the airborne line-scanned imagery to the aerial photography with an average accuracy of better than one pixel. Providing corresponding aerial photography is available, this approach can be applied in the absence of platform altitude information allowing multi-temporal data sets to be corrected and registered.
Resumo:
Early, lesion-based models of language processing suggested that semantic and phonological processes are associated with distinct temporal and parietal regions respectively, with frontal areas more indirectly involved. Contemporary spatial brain mapping techniques have not supported such clear-cut segregation, with strong evidence of activation in left temporal areas by both processes and disputed evidence of involvement of frontal areas in both processes. We suggest that combining spatial information with temporal and spectral data may allow a closer scrutiny of the differential involvement of closely overlapping cortical areas in language processing. Using beamforming techniques to analyze magnetoencephalography data, we localized the neuronal substrates underlying primed responses to nouns requiring either phonological or semantic processing, and examined the associated measures of time and frequency in those areas where activation was common to both tasks. Power changes in the beta (14-30 Hz) and gamma (30-50 Hz) frequency bandswere analyzed in pre-selected time windows of 350-550 and 500-700ms In left temporal regions, both tasks elicited power changes in the same time window (350-550 ms), but with different spectral characteristics, low beta (14-20 Hz) for the phonological task and high beta (20-30 Hz) for the semantic task. In frontal areas (BA10), both tasks elicited power changes in the gamma band (30-50 Hz), but in different time windows, 500-700ms for the phonological task and 350-550ms for the semantic task. In the left inferior parietal area (BA40), both tasks elicited changes in the 20-30 Hz beta frequency band but in different time windows, 350-550ms for the phonological task and 500-700ms for the semantic task. Our findings suggest that, where spatial measures may indicate overlapping areas of involvement, additional beamforming techniques can demonstrate differential activation in time and frequency domains. © 2012 McNab, Hillebrand, Swithenby and Rippon.
Resumo:
In the article, we have reviewed the means for visualization of syntax, semantics and source code for programming languages which support procedural and/or object-oriented paradigm. It is examined how the structure of the source code of the structural and object-oriented programming styles has influenced different approaches for their teaching. We maintain a thesis valid for the object-oriented programming paradigm, which claims that the activities for design and programming of classes are done by the same specialist, and the training of this specialist should include design as well as programming skills and knowledge for modeling of abstract data structures. We put the question how a high level of abstraction in the object-oriented paradigm should be presented in simple model in the design stage, so the complexity in the programming stage stay low and be easily learnable. We give answer to this question, by building models using the UML notation, as we take a concrete example from the teaching practice including programming techniques for inheritance and polymorphism.