978 resultados para temporal visualization techniques
Resumo:
With the exponential growth of the usage of web-based map services, the web GIS application has become more and more popular. Spatial data index, search, analysis, visualization and the resource management of such services are becoming increasingly important to deliver user-desired Quality of Service. First, spatial indexing is typically time-consuming and is not available to end-users. To address this, we introduce TerraFly sksOpen, an open-sourced an Online Indexing and Querying System for Big Geospatial Data. Integrated with the TerraFly Geospatial database [1-9], sksOpen is an efficient indexing and query engine for processing Top-k Spatial Boolean Queries. Further, we provide ergonomic visualization of query results on interactive maps to facilitate the user’s data analysis. Second, due to the highly complex and dynamic nature of GIS systems, it is quite challenging for the end users to quickly understand and analyze the spatial data, and to efficiently share their own data and analysis results with others. Built on the TerraFly Geo spatial database, TerraFly GeoCloud is an extra layer running upon the TerraFly map and can efficiently support many different visualization functions and spatial data analysis models. Furthermore, users can create unique URLs to visualize and share the analysis results. TerraFly GeoCloud also enables the MapQL technology to customize map visualization using SQL-like statements [10]. Third, map systems often serve dynamic web workloads and involve multiple CPU and I/O intensive tiers, which make it challenging to meet the response time targets of map requests while using the resources efficiently. Virtualization facilitates the deployment of web map services and improves their resource utilization through encapsulation and consolidation. Autonomic resource management allows resources to be automatically provisioned to a map service and its internal tiers on demand. v-TerraFly are techniques to predict the demand of map workloads online and optimize resource allocations, considering both response time and data freshness as the QoS target. The proposed v-TerraFly system is prototyped on TerraFly, a production web map service, and evaluated using real TerraFly workloads. The results show that v-TerraFly can accurately predict the workload demands: 18.91% more accurate; and efficiently allocate resources to meet the QoS target: improves the QoS by 26.19% and saves resource usages by 20.83% compared to traditional peak load-based resource allocation.
Resumo:
Clusters of temporal optical solitons—stable self-localized light pulses preserving their form during propagation—exhibit properties characteristic of that encountered in crystals. Here, we introduce the concept of temporal solitonic information crystals formed by the lattices of optical pulses with variable phases. The proposed general idea offers new approaches to optical coherent transmission technology and can be generalized to dispersion-managed and dissipative solitons as well as scaled to a variety of physical platforms from fiber optics to silicon chips. We discuss the key properties of such dynamic temporal crystals that mathematically correspond to non-Hermitian lattices and examine the types of collective mode instabilities determining the lifetime of the soliton train. This transfer of techniques and concepts from solid state physics to information theory promises a new outlook on information storage and transmission.
Resumo:
Model predictive control (MPC) has often been referred to in literature as a potential method for more efficient control of building heating systems. Though a significant performance improvement can be achieved with an MPC strategy, the complexity introduced to the commissioning of the system is often prohibitive. Models are required which can capture the thermodynamic properties of the building with sufficient accuracy for meaningful predictions to be made. Furthermore, a large number of tuning weights may need to be determined to achieve a desired performance. For MPC to become a practicable alternative, these issues must be addressed. Acknowledging the impact of the external environment as well as the interaction of occupants on the thermal behaviour of the building, in this work, techniques have been developed for deriving building models from data in which large, unmeasured disturbances are present. A spatio-temporal filtering process was introduced to determine estimates of the disturbances from measured data, which were then incorporated with metaheuristic search techniques to derive high-order simulation models, capable of replicating the thermal dynamics of a building. While a high-order simulation model allowed for control strategies to be analysed and compared, low-order models were required for use within the MPC strategy itself. The disturbance estimation techniques were adapted for use with system-identification methods to derive such models. MPC formulations were then derived to enable a more straightforward commissioning process and implemented in a validated simulation platform. A prioritised-objective strategy was developed which allowed for the tuning parameters typically associated with an MPC cost function to be omitted from the formulation by separation of the conflicting requirements of comfort satisfaction and energy reduction within a lexicographic framework. The improved ability of the formulation to be set-up and reconfigured in faulted conditions was shown.
Resumo:
This thesis is concerned with change point analysis for time series, i.e. with detection of structural breaks in time-ordered, random data. This long-standing research field regained popularity over the last few years and is still undergoing, as statistical analysis in general, a transformation to high-dimensional problems. We focus on the fundamental »change in the mean« problem and provide extensions of the classical non-parametric Darling-Erdős-type cumulative sum (CUSUM) testing and estimation theory within highdimensional Hilbert space settings. In the first part we contribute to (long run) principal component based testing methods for Hilbert space valued time series under a rather broad (abrupt, epidemic, gradual, multiple) change setting and under dependence. For the dependence structure we consider either traditional m-dependence assumptions or more recently developed m-approximability conditions which cover, e.g., MA, AR and ARCH models. We derive Gumbel and Brownian bridge type approximations of the distribution of the test statistic under the null hypothesis of no change and consistency conditions under the alternative. A new formulation of the test statistic using projections on subspaces allows us to simplify the standard proof techniques and to weaken common assumptions on the covariance structure. Furthermore, we propose to adjust the principal components by an implicit estimation of a (possible) change direction. This approach adds flexibility to projection based methods, weakens typical technical conditions and provides better consistency properties under the alternative. In the second part we contribute to estimation methods for common changes in the means of panels of Hilbert space valued time series. We analyze weighted CUSUM estimates within a recently proposed »high-dimensional low sample size (HDLSS)« framework, where the sample size is fixed but the number of panels increases. We derive sharp conditions on »pointwise asymptotic accuracy« or »uniform asymptotic accuracy« of those estimates in terms of the weighting function. Particularly, we prove that a covariance-based correction of Darling-Erdős-type CUSUM estimates is required to guarantee uniform asymptotic accuracy under moderate dependence conditions within panels and that these conditions are fulfilled, e.g., by any MA(1) time series. As a counterexample we show that for AR(1) time series, close to the non-stationary case, the dependence is too strong and uniform asymptotic accuracy cannot be ensured. Finally, we conduct simulations to demonstrate that our results are practically applicable and that our methodological suggestions are advantageous.
Resumo:
Monitoring agricultural crops constitutes a vital task for the general understanding of land use spatio-temporal dynamics. This paper presents an approach for the enhancement of current crop monitoring capabilities on a regional scale, in order to allow for the analysis of environmental and socio-economic drivers and impacts of agricultural land use. This work discusses the advantages and current limitations of using 250m VI data from the Moderate Resolution Imaging Spectroradiometer (MODIS) for this purpose, with emphasis in the difficulty of correctly analyzing pixels whose temporal responses are disturbed due to certain sources of interference such as mixed or heterogeneous land cover. It is shown that the influence of noisy or disturbed pixels can be minimized, and a much more consistent and useful result can be attained, if individual agricultural fields are identified and each field's pixels are analyzed in a collective manner. As such, a method is proposed that makes use of image segmentation techniques based on MODIS temporal information in order to identify portions of the study area that agree with actual agricultural field borders. The pixels of each portion or segment are then analyzed individually in order to estimate the reliability of the temporal signal observed and the consequent relevance of any estimation of land use from that data. The proposed method was applied in the state of Mato Grosso, in mid-western Brazil, where extensive ground truth data was available. Experiments were carried out using several supervised classification algorithms as well as different subsets of land cover classes, in order to test the methodology in a comprehensive way. Results show that the proposed method is capable of consistently improving classification results not only in terms of overall accuracy but also qualitatively by allowing a better understanding of the land use patterns detected. It thus provides a practical and straightforward procedure for enhancing crop-mapping capabilities using temporal series of moderate resolution remote sensing data.
Resumo:
Deep learning methods are extremely promising machine learning tools to analyze neuroimaging data. However, their potential use in clinical settings is limited because of the existing challenges of applying these methods to neuroimaging data. In this study, first a data leakage type caused by slice-level data split that is introduced during training and validation of a 2D CNN is surveyed and a quantitative assessment of the model’s performance overestimation is presented. Second, an interpretable, leakage-fee deep learning software written in a python language with a wide range of options has been developed to conduct both classification and regression analysis. The software was applied to the study of mild cognitive impairment (MCI) in patients with small vessel disease (SVD) using multi-parametric MRI data where the cognitive performance of 58 patients measured by five neuropsychological tests is predicted using a multi-input CNN model taking brain image and demographic data. Each of the cognitive test scores was predicted using different MRI-derived features. As MCI due to SVD has been hypothesized to be the effect of white matter damage, DTI-derived features MD and FA produced the best prediction outcome of the TMT-A score which is consistent with the existing literature. In a second study, an interpretable deep learning system aimed at 1) classifying Alzheimer disease and healthy subjects 2) examining the neural correlates of the disease that causes a cognitive decline in AD patients using CNN visualization tools and 3) highlighting the potential of interpretability techniques to capture a biased deep learning model is developed. Structural magnetic resonance imaging (MRI) data of 200 subjects was used by the proposed CNN model which was trained using a transfer learning-based approach producing a balanced accuracy of 71.6%. Brain regions in the frontal and parietal lobe showing the cerebral cortex atrophy were highlighted by the visualization tools.
Resumo:
In this thesis we focus on the analysis and interpretation of time dependent deformations recorded through different geodetic methods. Firstly, we apply a variational Bayesian Independent Component Analysis (vbICA) technique to GPS daily displacement solutions, to separate the postseismic deformation that followed the mainshocks of the 2016-2017 Central Italy seismic sequence from the other, hydrological, deformation sources. By interpreting the signal associated with the postseismic relaxation, we model an afterslip distribution on the faults involved by the mainshocks consistent with the co-seismic models available in literature. We find evidences of aseismic slip on the Paganica fault, responsible for the Mw 6.1 2009 L’Aquila earthquake, highlighting the importance of aseismic slip and static stress transfer to properly model the recurrence of earthquakes on nearby fault segments. We infer a possible viscoelastic relaxation of the lower crust as a contributing mechanism to the postseismic displacements. We highlight the importance of a proper separation of the hydrological signals for an accurate assessment of the tectonic processes, especially in cases of mm-scale deformations. Contextually, we provide a physical explanation to the ICs associated with the observed hydrological processes. In the second part of the thesis, we focus on strain data from Gladwin Tensor Strainmeters, working on the instruments deployed in Taiwan. We develop a novel approach, completely data driven, to calibrate these strainmeters. We carry out a joint analysis of geodetic (strainmeters, GPS and GRACE products) and hydrological (rain gauges and piezometers) data sets, to characterize the hydrological signals in Southern Taiwan. Lastly, we apply the calibration approach here proposed to the strainmeters recently installed in Central Italy. We provide, as an example, the detection of a storm that hit the Umbria-Marche regions (Italy), demonstrating the potential of strainmeters in following the dynamics of deformation processes with limited spatio-temporal signature
Resumo:
Teeth, with their high mineralisation, incremental growth, and lack of remodelling, serve as biological archives that document an individual's development. This project aims to utilise the potential of teeth in bioarchaeological studies to achieve three primary objectives: 1) to investigate the application of histological and histochemical methods in reconstructing developmental bio-chronologies and early life histories; 2) to refine the temporal precision of isotopic analysis of dentine collagen by developing a novel protocol that integrates micro-sampling techniques with high-resolution histomorphometrics; and 3) to synthesise data from enamel and dentine for a comprehensive understanding of early life development and dietary transitions. This study adopts an integrated multidisciplinary bioarchaeological approach, conducting histomorphometric analysis on enamel and dentine across deciduous and permanent dentitions. It applies high-temporal resolution trace element analysis to enamel using LA-ICPMS and δ13C and δ15N isotope analyses through sequential micro-sampling to dentine of permanent teeth. Samples were selected from diverse archaeological contexts across the Italian peninsula, covering the Upper Palaeolithic, Copper Age, and Early Medieval periods, providing insight into diachronic variations in infant development and life history. Findings highlight the efficacy of histological and histochemical techniques in accurately determining growth rates, physiological stress, dietary shifts (particularly timing of weaning), and age at death in infant remains. The consistency and comparison between enamel and dentine underscores the enhanced insight obtained from integrating information from both tissues. Importantly, the newly proposed protocol significantly improves the temporal accuracy of dentine collagen analysis, facilitating precise chronological placement of the results over broad developmental associations. This study reaffirms the significance of teeth as valuable bioarchaeological instruments. By introducing and testing multidisciplinary methods, it provides deeper insights into early life history and cultural practices across diverse chronological contexts, highlighting the importance of advanced methodologies in extracting detailed, accurate, and nuanced information from past populations.
Resumo:
The aim of this investigation was to compare the skeletal stability of three different rigid fixation methods after mandibular advancement. Fifty-five class II malocclusion patients treated with the use of bilateral sagittal split ramus osteotomy and mandibular advancement were selected for this retrospective study. Group 1 (n = 17) had miniplates with monocortical screws, Group 2 (n = 16) had bicortical screws and Group 3 (n = 22) had the osteotomy fixed by means of the hybrid technique. Cephalograms were taken preoperatively, 1 week within the postoperative care period, and 6 months after the orthognathic surgery. Linear and angular changes of the cephalometric landmarks of the chin region were measured at each period, and the changes at each cephalometric landmark were determined for the time gaps. Postoperative changes in the mandibular shape were analyzed to determine the stability of fixation methods. There was minimum difference in the relapse of the mandibular advancement among the three groups. Statistical analysis showed no significant difference in postoperative stability. However, a positive correlation between the amount of advancement and the amount of postoperative relapse was demonstrated by the linear multiple regression test (p < 0.05). It can be concluded that all techniques can be used to obtain stable postoperative results in mandibular advancement after 6 months.
Direct Visualization Of The Action Of Triton X-100 On Giant Vesicles Of Erythrocyte Membrane Lipids.
Resumo:
The raft hypothesis proposes that microdomains enriched in sphingolipids, cholesterol, and specific proteins are transiently formed to accomplish important cellular tasks. Equivocally, detergent-resistant membranes were initially assumed to be identical to membrane rafts, because of similarities between their compositions. In fact, the impact of detergents in membrane organization is still controversial. Here, we use phase contrast and fluorescence microscopy to observe giant unilamellar vesicles (GUVs) made of erythrocyte membrane lipids (erythro-GUVs) when exposed to the detergent Triton X-100 (TX-100). We clearly show that TX-100 has a restructuring action on biomembranes. Contact with TX-100 readily induces domain formation on the previously homogeneous membrane of erythro-GUVs at physiological and room temperatures. The shape and dynamics of the formed domains point to liquid-ordered/liquid-disordered (Lo/Ld) phase separation, typically found in raft-like ternary lipid mixtures. The Ld domains are then separated from the original vesicle and completely solubilized by TX-100. The insoluble vesicle left, in the Lo phase, represents around 2/3 of the original vesicle surface at room temperature and decreases to almost 1/2 at physiological temperature. This chain of events could be entirely reproduced with biomimetic GUVs of a simple ternary lipid mixture, 2:1:2 POPC/SM/chol (phosphatidylcholine/sphyngomyelin/cholesterol), showing that this behavior will arise because of fundamental physicochemical properties of simple lipid mixtures. This work provides direct visualization of TX-100-induced domain formation followed by selective (Ld phase) solubilization in a model system with a complex biological lipid composition.
Resumo:
The introduction of spraying procedures to fabricate layer-by-layer (LbL) films has brought new possibilities for the control of molecular architectures and for making the LbL technique compliant with industrial processes. In this study we show that significantly distinct architectures are produced for dipping and spray-LbL films of the same components, which included DODAB/DPPG vesicles. The films differed notably in their thickness and stratified nature. The electrical response of the two types of films to aqueous solutions containing erythrosin was also different. With multidimensional projections we showed that the impedance for the DODAB/DPPG spray-LbL film is more sensitive to changes in concentration, being therefore more promising as sensing units. Furthermore, with surface-enhanced Raman scattering (SERS) we could ascribe the high sensitivity of the LbL films to adsorption of erythrosin.
Resumo:
To investigate the degree of T2 relaxometry changes over time in groups of patients with familial mesial temporal lobe epilepsy (FMTLE) and asymptomatic relatives. We conducted both cross-sectional and longitudinal analyses of T2 relaxometry with Aftervoxel, an in-house software for medical image visualization. The cross-sectional study included 35 subjects (26 with FMTLE and 9 asymptomatic relatives) and 40 controls; the longitudinal study was composed of 30 subjects (21 with FMTLE and 9 asymptomatic relatives; the mean time interval of MRIs was 4.4 ± 1.5 years) and 16 controls. To increase the size of our groups of patients and relatives, we combined data acquired in 2 scanners (2T and 3T) and obtained z-scores using their respective controls. General linear model on SPSS21® was used for statistical analysis. In the cross-sectional analysis, elevated T2 relaxometry was identified for subjects with seizures and intermediate values for asymptomatic relatives compared to controls. Subjects with MRI signs of hippocampal sclerosis presented elevated T2 relaxometry in the ipsilateral hippocampus, while patients and asymptomatic relatives with normal MRI presented elevated T2 values in the right hippocampus. The longitudinal analysis revealed a significant increase in T2 relaxometry for the ipsilateral hippocampus exclusively in patients with seizures. The longitudinal increase of T2 signal in patients with seizures suggests the existence of an interaction between ongoing seizures and the underlying pathology, causing progressive damage to the hippocampus. The identification of elevated T2 relaxometry in asymptomatic relatives and in patients with normal MRI suggests that genetic factors may be involved in the development of some mild hippocampal abnormalities in FMTLE.
Resumo:
Quantification of dermal exposure to pesticides in rural workers, used in risk assessment, can be performed with different techniques such as patches or whole body evaluation. However, the wide variety of methods can jeopardize the process by producing disparate results, depending on the principles in sample collection. A critical review was thus performed on the main techniques for quantifying dermal exposure, calling attention to this issue and the need to establish a single methodology for quantification of dermal exposure in rural workers. Such harmonization of different techniques should help achieve safer and healthier working conditions. Techniques that can provide reliable exposure data are an essential first step towards avoiding harm to workers' health.
Resumo:
High-throughput screening of physical, genetic and chemical-genetic interactions brings important perspectives in the Systems Biology field, as the analysis of these interactions provides new insights into protein/gene function, cellular metabolic variations and the validation of therapeutic targets and drug design. However, such analysis depends on a pipeline connecting different tools that can automatically integrate data from diverse sources and result in a more comprehensive dataset that can be properly interpreted. We describe here the Integrated Interactome System (IIS), an integrative platform with a web-based interface for the annotation, analysis and visualization of the interaction profiles of proteins/genes, metabolites and drugs of interest. IIS works in four connected modules: (i) Submission module, which receives raw data derived from Sanger sequencing (e.g. two-hybrid system); (ii) Search module, which enables the user to search for the processed reads to be assembled into contigs/singlets, or for lists of proteins/genes, metabolites and drugs of interest, and add them to the project; (iii) Annotation module, which assigns annotations from several databases for the contigs/singlets or lists of proteins/genes, generating tables with automatic annotation that can be manually curated; and (iv) Interactome module, which maps the contigs/singlets or the uploaded lists to entries in our integrated database, building networks that gather novel identified interactions, protein and metabolite expression/concentration levels, subcellular localization and computed topological metrics, GO biological processes and KEGG pathways enrichment. This module generates a XGMML file that can be imported into Cytoscape or be visualized directly on the web. We have developed IIS by the integration of diverse databases following the need of appropriate tools for a systematic analysis of physical, genetic and chemical-genetic interactions. IIS was validated with yeast two-hybrid, proteomics and metabolomics datasets, but it is also extendable to other datasets. IIS is freely available online at: http://www.lge.ibi.unicamp.br/lnbio/IIS/.
Resumo:
The Centers for High Cost Medication (Centros de Medicação de Alto Custo, CEDMAC), Health Department, São Paulo were instituted by project in partnership with the Clinical Hospital of the Faculty of Medicine, USP, sponsored by the Foundation for Research Support of the State of São Paulo (Fundação de Amparo à Pesquisa do Estado de São Paulo, FAPESP) aimed at the formation of a statewide network for comprehensive care of patients referred for use of immunobiological agents in rheumatological diseases. The CEDMAC of Hospital de Clínicas, Universidade Estadual de Campinas (HC-Unicamp), implemented by the Division of Rheumatology, Faculty of Medical Sciences, identified the need for standardization of the multidisciplinary team conducts, in face of the specificity of care conducts, verifying the importance of describing, in manual format, their operational and technical processes. The aim of this study is to present the methodology applied to the elaboration of the CEDMAC/HC-Unicamp Manual as an institutional tool, with the aim of offering the best assistance and administrative quality. In the methodology for preparing the manuals at HC-Unicamp since 2008, the premise was to obtain a document that is participatory, multidisciplinary, focused on work processes integrated with institutional rules, with objective and didactic descriptions, in a standardized format and with electronic dissemination. The CEDMAC/HC-Unicamp Manual was elaborated in 10 months, with involvement of the entire multidisciplinary team, with 19 chapters on work processes and techniques, in addition to those concerning the organizational structure and its annexes. Published in the electronic portal of HC Manuals in July 2012 as an e-Book (ISBN 978-85-63274-17-5), the manual has been a valuable instrument in guiding professionals in healthcare, teaching and research activities.