915 resultados para surface plasmon
Resumo:
Anti-sigma factors Escherichia coli Rsd and bacteriophage T4 AsiA bind to the essential housekeeping sigma factor, sigma(70), of E. coli. Though both factors are known to interact with the C-terminal region of sigma(70), the physiological consequences of these interactions are very different. This study was undertaken for the purpose of deciphering the mechanisms by which E. coli Rsd and bacteriophage T4 AsiA inhibit or modulate the activity of E. coli RNA polymerase, which leads to the inhibition of E. coli cell growth to different amounts. It was found that AsiA is the more potent inhibitor of in vivo transcription and thus causes higher inhibition of E. coli cell growth. Measurements of affinity constants by surface plasmon resonance experiments showed that Rsd and AsiA bind to or 70 with similar affinity. Data obtained from in vivo and in vitro binding experiments clearly demonstrated that the major difference between AsiA and Rsd is the ability of AsiA to form a stable ternary complex with RNA polymerase. The binding patterns of AsiA and Rsd with sigma(70) studied by using the yeast two-hybrid system revealed that region 4 of sigma(70) is involved in binding to both of these anti-sigma factors; however, Rsd interacts with other regions of sigma(70) as well. Taken together, these results suggest that the higher inhibition of E. coli growth by AsiA expression is probably due to the ability of the AsiA protein to trap the holoenzyme RNA polymerase rather than its higher binding affinity to sigma(70).
Resumo:
Calreticulin is a lectin-like molecular chaperone of the endoplasmic reticulum in eukaryotes. Its interaction with N-glycosylated polypeptides is mediated by the glycan, Glc(1)Man(9)GlcNAc(2), present on the target glycoproteins. In this work, binding of monoglucosyl IgG (chicken) substrate to calreticulin has been studied using real time association kinetics of the interaction with the biosensor based on surface plasmon resonance (SPR). By SPR, accurate association and dissociation rate constants were determined, and these yielded a micromolar association constant. The nature of reaction was unaffected by immobilization of either of the reactants. The Scatchard analysis values for K-a agreed web crith the one obtained by the ratio k(1)/k(-1). The interaction was completely inhibited by free oligosaccharide, Glc(1)Man(9)GlcNAc(2), whereas Man(9)GlcNAc(2) did not bind to the calreticulin-substrate complex, attesting to the exquisite specificity of this interaction. The binding of calreticulin to IgG was used for the development of immunoassay and the relative affinity of the lectin-substrate association was indirectly measured. The values are in agreement with those obtained with SPR. Although the reactions are several orders of magnitude slower than the diffusion controlled processes, the data are qualitatively and quantitatively consistent with single-step bimolecular association and dissociation reaction. Analyses of the activation parameters indicate that reaction is enthalpically driven and does not involve a highly ordered transition state. Based on these data, the mechanism of its chaperone activity is briefly discussed.
Resumo:
Calreticulin is a lectin-like molecular chaperone of the endoplasmic reticulum in eukaryotes. Its interaction with N-glycosylated polypeptides is mediated by the glycan, Glc(1)Man(9)GlcNAc(2), present on the target glycoproteins. In this work, binding of monoglucosyl IgG (chicken) substrate to calreticulin has been studied using real time association kinetics of the interaction with the biosensor based on surface plasmon resonance (SPR). By SPR, accurate association and dissociation rate constants were determined, and these yielded a micromolar association constant. The nature of reaction was unaffected by immobilization of either of the reactants. The Scatchard analysis values for K-a agreed web crith the one obtained by the ratio k(1)/k(-1). The interaction was completely inhibited by free oligosaccharide, Glc(1)Man(9)GlcNAc(2), whereas Man(9)GlcNAc(2) did not bind to the calreticulin-substrate complex, attesting to the exquisite specificity of this interaction. The binding of calreticulin to IgG was used for the development of immunoassay and the relative affinity of the lectin-substrate association was indirectly measured. The values are in agreement with those obtained with SPR. Although the reactions are several orders of magnitude slower than the diffusion controlled processes, the data are qualitatively and quantitatively consistent with single-step bimolecular association and dissociation reaction. Analyses of the activation parameters indicate that reaction is enthalpically driven and does not involve a highly ordered transition state. Based on these data, the mechanism of its chaperone activity is briefly discussed.
Resumo:
Highly stable silver nanoparticles (Ag NPs) in agar-agar (Ag/agar) as inorganic-organic hybrid were obtained as free-standing film by in situ reduction of silver nitrate by ethanol. The antimicrobial activity of Ag/agar film on Escherichia coli (E. coil), Staphylococcus aureus (S. aureus), and Candida albicans (C albicans) was evaluated in a nutrient broth and also in saline solution. In particular, films were repeatedly tested for antimicrobial activity after recycling. UV-vis absorption and TEM studies were carried out on films at different stages and morphological studies on microbes were carried out by SEM. Results showed spherical Ag NPs of size 15-25 nm, having sharp surface plasmon resonance (SPR) band. The antimicrobial activity of Ag/agar film was found to be in the order, C. albicans > E. coil > S. aureus, and antimicrobial activity against C. albicans was almost maintained even after the third cycle. Whereas, in case of E. coil and S. aureus there was a sharp decline in antimicrobial activity after the second cycle. Agglomeration of Ag NPs in Ag/agar film on exposure to microbes was observed by TEM studies. Cytotoxic experiments carried out on HeLa cells showed a threshold Ag NPs concentration of 60 mu g/mL, much higher than the minimum inhibition concentration of Ag NPs (25.8 mu g/mL) for E. coli. The mechanical strength of the film determined by nanoindentation technique showed almost retention of the strength even after repeated cycle. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
In the present study silver nanoparticles were rapidly synthesized at room temperature by treating silver ions with the Citrus limon (lemon) extract The effect of various process parameters like the reductant con centration mixing ratio of the reactants and the concentration of silver nitrate were studied in detail In the standardized process 10(-2) M silver nitrate solution was interacted for 411 with lemon Juice (2% citric acid concentration and 0 5% ascorbic acid concentration) in the ratio of 1 4(vol vol) The formation of silver nanoparticles was confirmed by Surface Plasmon Resonance as determined by UV-Visible spectra in the range of 400-500 nm X ray diffraction analysis revealed the distinctive facets (1 1 1 200 220 2 2 2 and 3 1 1 planes) of silver nanoparticles We found that citric acid was the principal reducing agent for the nanosynthesis process FT IR spectral studies demonstrated citric acid as the probable stabilizing agent Silver nanoparticles below 50 nm with spherical and spheroidal shape were observed from transmission electron microscopy The correlation between absorption maxima and particle sizes were derived for different UV-Visible absorption maxima (corresponding to different citric acid concentrations) employing MiePlot v 3 4 The theoretical particle size corresponding to 2% citric acid concentration was corn pared to those obtained by various experimental techniques like X ray diffraction analysis atomic force microscopy and transmission electron microscopy (C) 2010 Elsevier B V All rights reserved
Resumo:
The influence of gold (similar to 35 nm diameter) as well as ReO3 (similar to 17 nm diameter) nanoparticles placed atop silicon photovoltaic devices on absorption and photocurrent generation has been investigated. The nanoparticles improve the power transmission into the semiconductor and consequently, the photocurrent response at wavelengths corresponding to plasmon absorption. An increase in short circuit current up to 4.5% under simulated solar irradiation was observed with the ReO3 nanoparticles, while the gold nanoparticles showed enhancements up to 6.5%. The increase in photocurrent is observed at wavelengths corresponding to the maxima in the surface plasmon resonance absorption spectra. (C) 2010 The Japan Society of Applied Physics
Resumo:
The surfactant-assisted seed-mediated growth method was used for the formation of gold nanorods (GNRs) directly on gold (Au) and indium tin oxide (ITO) surfaces. Citrate-stabilized similar to 2.6 nm spherical gold nanoparticles (AuNPs) were first self-assembled on ITO or Au surfaces modified with (3-mercaptopropyl)-trimethoxysilane (MPTS) sol-gel film and then immersed in a cationic surfactant growth solution to form GNRs. The growth of GNRs on the MPTS sol gel film modified ITO surface was monitored by UV-visible spectroscopy. The ITO surface with the attached spherical AuNPs shows a surface plasmon resonance band at 550 nm. The intensity of this absorption band increases while increasing the immersion time of the AuNP-modified ITO surface into the growth solution, and after 5 h, an additional shoulder band around 680 nm was observed. The intensity of this shoulder band increases, and it was shifted to longer wavelength as the immersion time of the AuNP-modified ITO surface into the growth solution increases. After 20 h, a predominant wave at 720 nm was observed along with a band at 550 nm. Further immersion of the modified ITO surface into the growth solution did not change the absorption characteristics. The bands observed at 550 and 720 nm were characteristics of GNRs, corresponding to transverse and longitudinal waves, respectively. The AFM images showed the presence of GNRs on the surface of the MPTS sol gel modified ITO surface with a typical length of similar to 100-120 nm and a width of similar to 20-22 nm in addition to a few spherical AuNPs, indicating that seeded spherical AuNPs were not completely involved in the GNRs' formation. Finally, the electrocatalytic activity of the surface-grown GNRs on the MPTS sol gel film modified Au electrode toward the oxidation of ascorbic acid (AA) was studied. Unlike a polycrystalline Au electrode, the surface-grown GNR-modified electrode shows two well-defined voltammetric peaks for AA at 0.01 and 0.35 V in alkaline, neutral, and acidic pHs. The cause for the observed two oxidation peaks for AA was due to the presence of both nanorods and spherical nanoparticles on the electrode surface. The presence of spherical AuNPs on the MPTS sol gel film oxidized AA at more positive potential, whereas the GNRs oxidized AA at less positive potential. The observed 340 mV less positive potential shift in the oxidation of AA suggested that GNRs are better electrocatalysts for the oxidation of AA than the spherical AuNPs.
Resumo:
Kinetic constants of MAb-hCG interactions have been determined using solid phase binding of I-125[hCG] to immobilized MAb. While association has been shown to follow the expected pattern, dissociation consists of at least two reversible steps, one with a rate constant of 0.0025 min(-1), and a second with a rate constant of 0.00023 min(-1). Validity of affinity constant measurements in the light of the complex reaction kinetics is discussed, A comparison between the method of surface plasmon resonance technology (BIAcore) and solid phase binding (SPB) for determination of kinetic parameters shows that SPB provides not only a cost-effective approach for determination of realtime kinetic parameters of macromolecular ligand-ligate interaction but also a method with several advantages over the BIAcore system in investigating the mechanism of antigen-antibody interaction.
Resumo:
Real-time kinetics of ligand-ligate interaction has predominantly been studied by either fluorescence or surface plasmon resonance based methods. Almost all such studies are based on association between the ligand and the ligate. This paper reports our analysis of dissociation data of monoclonal antibody-antigen (hCG) system using radio-iodinated hCG as a probe and nitrocellulose as a solid support to immobilize mAb. The data was analyzed quantitatively for a one-step and a two-step model. The data fits well into the two-step model. We also found that a fraction of what is bound is non-dissociable (tight-binding portion (TBP)). The TBP was neither an artifact of immobilization nor does it interfere with analysis. It was present when the reaction was carried out in homogeneous solution in liquid phase. The rate constants obtained from the two methods were comparable. The work reported here shows that real-time kinetics of other ligand-ligate interaction can be studied using nitrocellulose as a solid support. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
In this work, we have prepared Ag-nanorods using biscationic gemini surfactant micelles as the media by a seed-mediated wet synthesis method. Towards this end, we first synthesized Ag-nanoseeds of diameter similar to 7 nm stabilized by trisodium citrate (as the capping agent). Then these Ag-nanoseeds were used to synthesize Ag-nanorods of different aspect ratios. With decreasing Ag-nanoseed concentration, the aspect ratios of the Ag-nanorods stabilized by these gemini surfactants increased gradually. Various Ag-nanoseeds and Ag-nanospecies were characterized using UV-Vis spectroscopy (to know the surface plasmon bands), transmission electron microscopy (to find out their particle sizes and distribution), energy-dispersive X-ray spectroscopy and X-ray diffraction. When we used micelles derived from gemini surfactants of shorter spacer-(CH(2))(n)-(n = 2 or 4) to stabilize the Ag-nanorods, the lambda(max) of the longitudinal band shifted more towards the blue region compared to that of the gemini surfactant micelles with a longer spacer-(CH(2))(n)-(n = 5, 12) at a given amount of the Ag-nanoseed solution. So, the growth of Ag-nanorods in the gemini micellar solutions depends on the spacer-chain length of gemini surfactants employed.
Resumo:
The protein MsRbpA from Mycobacterium smegmatis rescues RNA polymerase (RNAP) from the inhibitory effect of rifampicin (Rif). We have reported previously that MsRbpA interacts with the beta-subunit of RNAP and that the effect of MsRbpA on Rif-resistant (Rif(R)) RNAP is minimal. Here we attempted to gain molecular insights into the mechanism of action of this protein with respect to its role in rescuing RNAP from Rif-mediated transcription inhibition. Our experimental approach comprised multiple-round transcription assays, fluorescence spectroscopy, MS and surface plasmon resonance in order to meet the above objective. Based on our molecular studies we propose here that Rif is released from its binding site in the RNAP-Rif complex in the presence of MsRbpA. Biophysical studies reveal that the location of MsRbpA on RNAP is at the junction of the beta- and beta'-subunits, close to the Rif-binding site and the (i + 1) site on RNAP.
Resumo:
Novel gold nanoparticles bearing cationic single-chain, double-chain, and cholesterol based amphiphilic units have been synthesized. These nanoparticles represent size-stable entities in which various cationic lipids have been immobilized through their thiol group onto the gold nanoparticle core. The resulting colloids have been characterized by UV-vis, (1)H NMR, FT-IR spectroscopy, and transmission electron microscopy. The average size of the resultant nanoparticles could be controlled by the relative bulkiness of the capping agent. Thus, the average diameters of the nanoparticles formed from the cationic single-chain, double-chain, and cholesterol based thiolate-coated materials were 5.9,2.9, and 2.04 nm, respectively. We also examined the interaction of these cationic gold nanoparticles with vesicular membranes generated from dipalmitoylphosphatidylcholine (DPPC) lipid suspensions. Nanoparticle doped DPPC vesicular suspensions displayed a characteristic surface plasmon band in their UV-vis spectra. Inclusion of nanoparticles in vesicular suspensions led to increases in the aggregate diameters, as evidenced from dynamic light scattering. Differential scanning calorimetric examination indicated that incorporation of single-chain, double-chain, and cholesteryl-linked cationic nanoparticles exert variable effects on the DPPC melting transitions. While increased doping of single-chain nanoparticles in DPPC resulted in the phases that melt at higher temperatures, inclusion of an incremental amount of double-chain nanoparticles caused the lowering of the melting temperature of DPPC. On the other hand, the cationic cholesteryl nanoparticle interacted with DPPC in membranes in a manner somewhat analogous to that of cholesterol itself and caused broadening of the DPPC melting transition.
Resumo:
Oligoarabinofuranoside-containing glycolipids relevant to mycobacterial cell wall components were synthesized in order to understand the functional roles of such glycolipids. A series of linear tetra-, hexa-, octa-and a branched heptasaccharide oligoarabinofuranosides, with 1 -> 2 and 1 -> 5 a-linkages between the furanoside residues, were synthesized by chemical methods from readily available monomer building blocks. Upon the synthesis of glycolipids, constituted with a double alkyl chain-substituted sn-glycerol core and oligosaccharide fragments, biological studies were performed to identify the effect of synthetic glycolipids on the biofilm formation and sliding motilities of Mycobacterium smegmatis. Synthetic glycolipids and arabinofuranosides displayed an inhibitory effect on the growth profile, but mostly on the biofilm formation and maturation. Similarly, synthetic compounds also influenced the sliding motility of the bacteria. Further, biophysical studies were undertaken, so as to identify the interactions of the glycolipids with a pulmonary surfactant protein, namely surfactant protein A (SP-A), with the aid of the surface plasmon resonance technique. Specificities of each glycolipid interacting with SP-A were thus evaluated. From this study, glycolipids were found to exhibit higher apparent association constants than the corresponding oligosaccharide portion alone, without the double alkyl group-substituted glycerol core.
Resumo:
Solubilization of single walled carbon nanotubes (SWNTs) in aqueous milieu by self assembly of bivalent glycolipids is described. Thorough analysis of the resulting composites involving Vis/near-IR spectroscopy, surface plasmon resonance, confocal Raman and atomic force microscopy reveals that glycolipid-coated SWNTs possess specific molecular recognition properties towards lectins.
Resumo:
The photoelectrode of Eosin-Y sensitised DSSC was modified by incorporating Au-nanoparticles to enhance the power conversion efficiency via scattering from surface plasmon polaritons. Size dependence of Au nanoparticle on conversion efficiency was performed in DSSC for the first time by varying the particle size from 20 to 94 nm. It was found that, the conversion efficiency is highly dependent on the size of the Au nanoparticles. For larger particles (>50 nm), the efficiency was found to be increased due to constructive interference between the transmitted and scattered waves from the Au nanoparticle while for smaller particles, the efficiency decreases due to destructive interference. Also a reduction in the V-oc was observed in general, due to the negative shifting of the TiO2 Fermi level on the adsorption of Au nanoparticle. This shift was negligible for larger particles. When 94 nm size particles were employed the conversion efficiency was doubled from 0.74% to 1.52%. This study points towards the application of the scattering effect of metal nanoparticle to enhance the conversion efficiency in DSSCs. (C) 2011 Elsevier Ltd. All rights reserved.