986 resultados para sulfate-reducing bacteria
Resumo:
International evidence on the cost and effects of interventions for reducing the global burden of depression remain scarce. Aims: To estimate the population-level cost-effectiveness of evidence-based depression interventions and their contribution towards reducing current burden. Method: Primary-care-based depression interventions were modelled at the level of whole populations in 14 epidemiological subregions of the world. Total population-level costs (in international dollars or I$) and effectiveness (disability adjusted life years (DALYs) averted) were combined to form average and incremental cost-effectiveness ratios. Results: Evaluated interventions have the potential to reduce the current burden of depression by 10–30%. Pharmacotherapy with older antidepressant drugs, with or without proactive collaborative care, are currently more cost-effective strategies than those using newer antidepressants, particularly in lower-income subregions. Conclusions: Even in resource-poor regions, each DALYaverted by efficient depression treatments in primary care costs less than 1 year of average per capita income, making such interventions a cost-effective use of health resources. However, current levels of burden can only be reduced significantlyif there is a substantialincrease substantial increase intreatment coverage.
An Algorithm for Reducing the Effect of Compression/Decompression Techniques on Fingerprint Minutiae
Resumo:
A simple mimetic of a heparan sulfate disaccharide sequence that binds to the growth factors FGF-1 and FGF-2 was synthesized by coupling a 2-azido-2-deoxy-D-glucosyl trichloroacetimidate donor with a 1,6-anhydro-2-azido-2-deoxy--D-glucose acceptor. Both the donor and acceptor were obtained from a common intermediate readily obtained from D-glucal. Molecular docking calculations showed that the predicted locations of the disaccharide sulfo groups in the binding site of FGF-1 and FGF-2 are similar to the positions observed for co-crystallized heparin-derived oligosaccharides obtained from published crystal structures.
Resumo:
Heparan sulfate mimetics, which we have called the PG500 series, have been developed to target the inhibition of both angiogenesis and heparanase activity. This series extends the technology underpinning PI-88, a mixture of highly sulfated oligosaccharides which reached Phase III clinical development for hepatocellular carcinoma. Advances in the chemistry of the PG500 series provide numerous advantages over PI-88. These new compounds are fully sulfated, single entity oligosaccharides attached to a lipophilic moiety, which have been optimized for drug development. The rational design of these compounds has led to vast improvements in potency compared to PI-88, based on in vitro angiogenesis assays and in vivo tumor models. Based on these and other data, PG545 has been selected as the lead clinical candidate for oncology and is currently undergoing formal preclinical development as a novel treatment for advanced cancer.