943 resultados para sucrose gradient centrifugation
Resumo:
Current flowing in the global atmospheric electrical circuit (AEC) substantially decreased during the twentieth century. Fair-weather potential gradient (PG) observations in Scotland and Shetland show a previously unreported annual decline from 1920 to 1980, when the measurements ceased. A 25% reduction in PG occurred in Scotland 1920–50, with the maximum decline during the winter months. This is quantitatively explained by a decrease in cosmic rays (CR) increasing the thunderstorm-electrosphere coupling resistance, reducing the ionospheric potential VI. Independent measurements of VI also suggest a reduction of 27% from 1920–50. The secular decrease will influence fair weather atmospheric electrical parameters, including ion concentrations and aerosol electrification. Between 1920–50, the PG showed a negative correlation with global temperature, despite the positive correlation found recently between surface temperature and VI. The 1980s stabilisation in VI may arise from compensation of the continuing CR-induced decline by increases in global temperature and convective electrification.
Resumo:
From birth onwards, the gastrointestinal (GI) tract of infants progressively acquires a complex range of micro-organisms. It is thought that by 2 years of age the GI microbial population has stabilized. Within the developmental period of the infant GI microbiota, weaning is considered to be most critical, as the infant switches from a milk-based diet (breast and/or formula) to a variety of food components. Longitudinal analysis of the biological succession of the infant GI/faecal microbiota is lacking. In this study, faecal samples were obtained regularly from 14 infants from 1 month to 18 months of age. Seven of the infants (including a set of twins) were exclusively breast-fed and seven were exclusively formula-fed prior to weaning, with 175 and 154 faecal samples, respectively, obtained from each group. Diversity and dynamics of the infant faecal microbiota were analysed by using fluorescence in situ hybridization and denaturing gradient gel electrophoresis. Overall, the data demonstrated large inter- and intra-individual differences in the faecal microbiological profiles during the study period. However, the infant faecal microbiota merged with time towards a climax community within and between feeding groups. Data from the twins showed the highest degree of similarity both quantitatively and qualitatively. Inter-individual variation was evident within the infant faecal microbiota and its development, even within exclusively formula-fed infants receiving the same diet. These data can be of help to future clinical trials (e.g. targeted weaning products) to organize protocols and obtain a more accurate outline of the changes and dynamics of the infant GI microbiota.
Resumo:
This paper discusses how numerical gradient estimation methods may be used in order to reduce the computational demands on a class of multidimensional clustering algorithms. The study is motivated by the recognition that several current point-density based cluster identification algorithms could benefit from a reduction of computational demand if approximate a-priori estimates of the cluster centres present in a given data set could be supplied as starting conditions for these algorithms. In this particular presentation, the algorithm shown to benefit from the technique is the Mean-Tracking (M-T) cluster algorithm, but the results obtained from the gradient estimation approach may also be applied to other clustering algorithms and their related disciplines.
Resumo:
A key idea in the study of the Atlantic meridional overturning circulation (AMOC) is that its strength is proportional to the meridional density gradient, or more precisely, to the strength of the meridional pressure gradient. A physical basis that would tell us how to estimate the relevant meridional pressure gradient locally from the density distribution in numerical ocean models to test such an idea, has been lacking however. Recently, studies of ocean energetics have suggested that the AMOC is driven by the release of available potential energy (APE) into kinetic energy (KE), and that such a conversion takes place primarily in the deep western boundary currents. In this paper, we develop an analytical description linking the western boundary current circulation below the interface separating the North Atlantic Deep Water (NADW) and Antarctic Intermediate Water (AAIW) to the shape of this interface. The simple analytical model also shows how available potential energy is converted into kinetic energy at each location, and that the strength of the transport within the western boundary current is proportional to the local meridional pressure gradient at low latitudes. The present results suggest, therefore, that the conversion rate of potential energy may provide the necessary physical basis for linking the strength of the AMOC to the meridional pressure gradient, and that this could be achieved by a detailed study of the APE to KE conversion in the western boundary current.
Resumo:
A cloud-resolving model is modified to implement the weak temperature gradient approximation in order to simulate the interactions between tropical convection and the large-scale tropical circulation. The instantaneous domain-mean potential temperature is relaxed toward a reference profile obtained from a radiative–convective equilibrium simulation of the cloud-resolving model. For homogeneous surface conditions, the model state at equilibrium is a large-scale circulation with its descending branch in the simulated column. This is similar to the equilibrium state found in some other studies, but not all. For this model, the development of such a circulation is insensitive to the relaxation profile and the initial conditions. Two columns of the cloud-resolving model are fully coupled by relaxing the instantaneous domain-mean potential temperature in both columns toward each other. This configuration is energetically closed in contrast to the reference-column configuration. No mean large-scale circulation develops over homogeneous surface conditions, regardless of the relative area of the two columns. The sensitivity to nonuniform surface conditions is similar to that obtained in the reference-column configuration if the two simulated columns have very different areas, but it is markedly weaker for columns of comparable area. The weaker sensitivity can be understood as being a consequence of a formulation for which the energy budget is closed. The reference-column configuration has been used to study the convection in a local region under the influence of a large-scale circulation. The extension to a two-column configuration is proposed as a methodology for studying the influence on local convection of changes in remote convection.
Resumo:
With the exceptions of the bifidobacteria, propionibacteria and coriobacteria, the Actinobacteria associated with the human gastrointestinal tract have received little attention. This has been due to the seeming absence of these bacteria from most clone libraries. In addition, many of these bacteria have fastidious growth and atmospheric requirements. A recent cultivation-based study has shown that the Actinobacteria of the human gut may be more diverse than previously thought. The aim of this study was to develop a denaturing gradient gel electrophoresis (DGGE) approach for characterizing Actinobacteria present in faecal samples. Amount of DNA added to the Actinobacteria-specific PCR used to generate strong PCR products of equal intenstity from faecal samples of five infants, nine adults and eight elderly adults was anti-correlated with counts of bacteria obtained using fluorescence in situ hybridization probe HGC69A. A nested PCR using Actinobacteria-specific and universal PCR-DGGE primers was used to generate profiles for the Actinobacteria. Cloning of sequences from the DGGE bands confirmed the specificity of the Actinobacteria-specific primers. In addition to members of the genus Bifidobacterium, species belonging to the genera Propionibacterium, Microbacterium, Brevibacterium, Actinomyces and Corynebacterium were found to be part of the faecal microbiota of healthy humans.
Resumo:
In this article, we present additional support of Duffield's (2003, 2005) distinction between Underlying Competence and Surface Competence. Duffield argues that a more fine-grained distinction between levels of competence and performance is warranted and necessary. While underlying competence is categorical, surface competence is more probabilistic and gradient, being sensitive to lexical and constructional contingencies, including the contextual appropriateness of a given construction. We examine a subset of results from a study comparing native and learner competence of properties at the syntax-discourse interface. Specifically, we look at the acceptability of Clitic Right Dislocation in native and L2 Spanish, in discourse-appropriate context. We argue that Duffield's distinction is a possible explanation of our results.
Resumo:
The authors study the role of ocean heat transport (OHT) in the maintenance of a warm, equable, ice-free climate. An ensemble of idealized aquaplanet GCM calculations is used to assess the equilibrium sensitivity of global mean surface temperature and its equator-to-pole gradient (ΔT) to variations in OHT, prescribed through a simple analytical formula representing export out of the tropics and poleward convergence. Low-latitude OHT warms the mid- to high latitudes without cooling the tropics; increases by 1°C and ΔT decreases by 2.6°C for every 0.5-PW increase in OHT across 30° latitude. This warming is relatively insensitive to the detailed meridional structure of OHT. It occurs in spite of near-perfect atmospheric compensation of large imposed variations in OHT: the total poleward heat transport is nearly fixed. The warming results from a convective adjustment of the extratropical troposphere. Increased OHT drives a shift from large-scale to convective precipitation in the midlatitude storm tracks. Warming arises primarily from enhanced greenhouse trapping associated with convective moistening of the upper troposphere. Warming extends to the poles by atmospheric processes even in the absence of high-latitude OHT. A new conceptual model for equable climates is proposed, in which OHT plays a key role by driving enhanced deep convection in the midlatitude storm tracks. In this view, the climatic impact of OHT depends on its effects on the greenhouse properties of the atmosphere, rather than its ability to increase the total poleward energy transport.
Resumo:
The leaf carbon isotope ratio (δ13C) of C3 plants is inversely related to the drawdown of CO2 concentration during photosynthesis, which increases towards drier environments. We aimed to discriminate between the hypothesis of universal scaling, which predicts between-species responses of δ13C to aridity similar to within-species responses, and biotic homoeostasis, which predicts offsets in the δ13C of species occupying adjacent ranges. The Northeast China Transect spans 130–900 mm annual precipitation within a narrow latitude and temperature range. Leaves of 171 species were sampled at 33 sites along the transect (18 at ≥ 5 sites) for dry matter, carbon (C) and nitrogen (N) content, specific leaf area (SLA) and δ13C. The δ13C of species generally followed a common relationship with the climatic moisture index (MI). Offsets between adjacent species were not observed. Trees and forbs diverged slightly at high MI. In C3 plants, δ13C predicted N per unit leaf area (Narea) better than MI. The δ13C of C4 plants was invariant with MI. SLA declined and Narea increased towards low MI in both C3 and C4 plants. The data are consistent with optimal stomatal regulation with respect to atmospheric dryness. They provide evidence for universal scaling of CO2 drawdown with aridity in C3 plants.
Resumo:
We derive energy-norm a posteriori error bounds, using gradient recovery (ZZ) estimators to control the spatial error, for fully discrete schemes for the linear heat equation. This appears to be the �rst completely rigorous derivation of ZZ estimators for fully discrete schemes for evolution problems, without any restrictive assumption on the timestep size. An essential tool for the analysis is the elliptic reconstruction technique.Our theoretical results are backed with extensive numerical experimentation aimed at (a) testing the practical sharpness and asymptotic behaviour of the error estimator against the error, and (b) deriving an adaptive method based on our estimators. An extra novelty provided is an implementation of a coarsening error "preindicator", with a complete implementation guide in ALBERTA in the appendix.
Resumo:
High soil phosphorus (P) concentration is frequently shown to reduce root colonization by arbuscular mycorrhizal (AM) fungi, but the influence of P on the diversity of colonizing AM fungi is uncertain. We used terminal restriction fragment length polymorphism (T-RFLP) of 18S rDNA and cloning to assess diversity of AM fungi colonizing maize (Zea mays), soybean (Glycene max) and field violet (Viola arvensis) at three time points in one season along a P gradient of 10280mgl1 in the field. Percentage AM colonization changed between sampling time points but was not reduced by high soil P except in maize. There was no significant difference in AM diversity between sampling time points. Diversity was reduced at concentrations of P > 25mgl1, particularly in maize and soybean. Both cloning and T-RFLP indicated differences between AM communities in the different host species. Host species was more important than soil P in determining the AM community, except at the highest P concentration. Our results show that the impact of soil P on the diversity of AM fungi colonizing plants was broadly similar, despite the fact that different plants contained different communities. However, subtle differences in the response of the AM community in each host were evident.
Resumo:
Sugars in plants, derived from photosynthesis, act as substrates for energy metabolism and the biosynthesis of complex carbohydrates, providing sink tissues with the necessary resources to grow and to develop. In addition, sugars can act as secondary messengers, with the ability to regulate plant growth and development in response to biotic and abiotic stresses. Sugar-signalling networks have the ability to regulate directly the expression of genes and to interact with other signalling pathways. Photosynthate is primarily transported to sink tissues as sucrose via the phloem. Under phosphorus (P) starvation, plants accumulate sugars and starch in their leaves. Increased loading of sucrose to the phloem under P starvation not only functions to relocate carbon resources to the roots, which increases their size relative to the shoot, but also has the potential to initiate sugar-signalling cascades that alter the expression of genes involved in optimizing root biochemistry to acquire soil phosphorus through increased expression and activity of inorganic phosphate transporters, the secretion of acid phosphatases and organic acids to release P from the soil, and the optimization of internal P use. This review looks at the evidence for the involvement of phloem sucrose in co-ordinating plant responses to P starvation at both the transcriptional and physiological levels.
Resumo:
The role of eddy fluxes in the general circulation is often approached by treating eddies as (macro)turbulence. In this approach, the eddies act to diffuse certain quasiconservative quantities, such as potential vorticity (PV), along isentropic surfaces in the free atmosphere. The eddy fluxes are determined primarily by the eddy diffusivities and are necessarily down-gradient of the basic state PV field. Support for the (macro)turbulence approach stems from the fact that the eddy fluxes of PV in the free atmosphere are generally down-gradient in the long-term mean. Here we call attention to a pronounced and significant region of upgradient eddy PV fluxes on the poleward flank of the jet core in both hemispheres. The region of up-gradient (i.e., notionally “antidiffusive”) eddy PV fluxes is most pronounced during the winter and spring seasons and partially contradicts the turbulence approach described above. Analyses of the PV variance (potential enstrophy) budget suggest that the up-gradient PV fluxes represent local wave decay and are maintained by poleward fluxes of PV variance. Finite-amplitude effects thus represent leading order contributions to the PV variance budget, whereas dissipation is only of secondary importance locally. The appearance of up-gradient PV fluxes in the long-term mean is associated with the poleward shift of the jet—and thus the region of wave decay relative to wave growth—following wave-breaking events.