989 resultados para stranded cable stiffness


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Editing of RNA changes the read-out of information from DNA by altering the nucleotide sequence of a transcript. One type of RNA editing found in all metazoans uses double-stranded RNA (dsRNA) as a substrate and results in the deamination of adenosine to give inosine, which is translated as guanosine. Editing thus allows variant proteins to be produced from a single pre-mRNA. A mechanism by which dsRNA substrates form is through pairing of intronic and exonic sequences before the removal of noncoding sequences by splicing. Here we report that the RNA editing enzyme, human dsRNA adenosine deaminase (DRADA1, or ADAR1) contains a domain (Zα) that binds specifically to the left-handed Z-DNA conformation with high affinity (KD = 4 nM). As formation of Z-DNA in vivo occurs 5′ to, or behind, a moving RNA polymerase during transcription, recognition of Z-DNA by DRADA1 provides a plausible mechanism by which DRADA1 can be targeted to a nascent RNA so that editing occurs before splicing. Analysis of sequences related to Zα has allowed identification of motifs common to this class of nucleic acid binding domain.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

When a hair cell is stimulated by positive deflection of its hair bundle, increased tension in gating springs opens transduction channels, permitting cations to enter stereocilia and depolarize the cell. Ca2+ is thought to be required in mechanoelectrical transduction, for exposure of hair bundles to Ca2+ chelators eliminates responsiveness by disrupting tip links, filamentous interstereociliary connections that probably are the gating springs. Ca2+ also participates in adaptation to stimuli by controlling the activity of a molecular motor that sets gating-spring tension. Using a flexible glass fiber to measure hair-bundle stiffness, we investigated the effect of Ca2+ concentration on stiffness before and after the disruption of gating springs. The stiffness of intact hair bundles depended nonmonotonically on the extracellular Ca2+ concentration; the maximal stiffness of ≈1200 μN⋅m−1 occurred when bundles were bathed in solutions containing 250 μM Ca2+, approximately the concentration found in frog endolymph. For cells exposed to solutions with sufficient chelator capacity to reduce the Ca2+ concentration below ≈100 nM, hair-bundle stiffness fell to ≈200 μN⋅m−1 and no longer exhibited Ca2+-dependent changes. Because cells so treated lost mechanoelectrical transduction, we attribute the reduction in bundle stiffness to tip-link disruption. The results indicate that gating springs are not linearly elastic; instead, they stiffen with increased strain, which rises with adaptation-motor activity at the physiological extracellular Ca2+ concentration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The linear pentadecapeptide antibiotic, gramicidin D, is a naturally occurring product of Bacillus brevis known to form ion channels in synthetic and natural membranes. The x-ray crystal structures of the right-handed double-stranded double-helical dimers (DSDHℛ) reported here agree with 15N-NMR and CD data on the functional gramicidin D channel in lipid bilayers. These structures demonstrate single-file ion transfer through the channels. The results also indicate that previous crystal structure reports of a left-handed double-stranded double-helical dimer in complex with Cs+ and K+ salts may be in error and that our evidence points to the DSDHℛ as the major conformer responsible for ion transport in membranes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Single-stranded DNA-binding proteins (SSBs) play essential roles in DNA replication, recombination, and repair in bacteria and eukarya. We report here the identification and characterization of the SSB of an archaeon, Methanococcus jannaschii. The M. jannaschii SSB (mjaSSB) has significant amino acid sequence similarity to the eukaryotic SSB, replication protein A (RPA), and contains four tandem repeats of the core single-stranded DNA (ssDNA) binding domain originally defined by structural studies of RPA. Homologous SSBs are encoded by the genomes of other archaeal species, including Methanobacterium thermoautotrophicum and Archaeoglobus fulgidus. The purified mjaSSB binds to ssDNA with high affinity and selectivity. The apparent association constant for binding to ssDNA is similar to that of RPA under comparable experimental conditions, and the affinity for ssDNA exceeds that for double-stranded DNA by at least two orders of magnitude. The binding site size for mjaSSB is ≈20 nucleotides. Given that RPA is related to mjaSSB at the sequence level and to Escherichia coli SSB at the structural level, we conclude that the SSBs of archaea, eukarya, and bacteria share a common core ssDNA-binding domain. This ssDNA-binding domain was presumably present in the common ancestor to all three major branches of life.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Double-stranded RNA (dsRNA) recently has been shown to give rise to genetic interference in Caenorhabditis elegans and also is likely to be the basis for phenotypic cosuppression in plants in certain instances. While constructing a plasmid vector for transfection of trypanosome cells, we serendipitously discovered that in vivo expression of dsRNA of the α-tubulin mRNA 5′ untranslated region (5′ UTR) led to multinucleated cells with striking morphological alterations and a specific block of cytokinesis. Transfection of synthetic α-tubulin 5′ UTR dsRNA, but not of either strand individually, caused the same phenotype. On dsRNA transfection, tubulin mRNA, but not the corresponding pre-mRNA, was rapidly and specifically degraded, leading to a deficit of α-tubulin synthesis. The transfected cells were no longer capable of carrying out cytokinesis and eventually died. Analysis of cytoskeletal structures from these trypanosomes revealed defects in the microtubules of the flagellar axoneme and of the flagellar attachment zone, a complex cortical structure that we propose is essential for establishing the path of the cleavage furrow at cytokinesis. Last, dsRNA-mediated mRNA degradation is not restricted to α-tubulin mRNA but can be applied to other cellular mRNAs, thus establishing a powerful tool to genetically manipulate these important protozoan parasites.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Subunit oligomerization of many proteins is mediated by coiled-coil domains. Although the basic features contributing to the thermodynamic stability of coiled coils are well understood, the mechanistic details of their assembly have not yet been dissected. Here we report a 13-residue sequence pattern that occurs with limited sequence variations in many two-stranded coiled coils and that is absolutely required for the assembly of the Dictyostelium discoideum actin-bundling protein cortexillin I and the yeast transcriptional activator GCN4. The functional relationship between coiled-coil “trigger” sequences was manifested by replacing the intrinsic trigger motif of GCN4 with the related sequence from cortexillin I. We demonstrate that these trigger sequences represent autonomous helical folding units that, in contrast to arbitrarily chosen heptad repeats, can mediate coiled-coil formation. Aside from being of general interest for protein folding, trigger motifs should be of particular importance in the protein de novo design.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

DNA and other biopolymers differ from classical polymers because of their torsional stiffness. This property changes the statistical character of their conformations under tension from a classical random walk to a problem we call the “torsional directed walk.” Motivated by a recent experiment on single lambda-DNA molecules [Strick, T. R., Allemand, J.-F., Bensimon, D., Bensimon, A. & Croquette, V. (1996) Science 271, 1835–1837], we formulate the torsional directed walk problem and solve it analytically in the appropriate force regime. Our technique affords a direct physical determination of the microscopic twist stiffness C and twist-stretch coupling D relevant for DNA functionality. The theory quantitatively fits existing experimental data for relative extension as a function of overtwist over a wide range of applied force; fitting to the experimental data yields the numerical values C = 120 nm and D = 50 nm. Future experiments will refine these values. We also predict that the phenomenon of reduction of effective twist stiffness by bend fluctuations should be testable in future single-molecule experiments, and we give its analytic form.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The products of the recF, recO, and recR genes are thought to interact and assist RecA in the utilization of single-stranded DNA precomplexed with single-stranded DNA binding protein (Ssb) during synapsis. Using immunoprecipitation, size-exclusion chromatography, and Ssb protein affinity chromatography in the absence of any nucleotide cofactors, we have obtained the following results: (i) RecF interacts with RecO, (ii) RecF interacts with RecR in the presence of RecO to form a complex consisting of RecF, RecO, and RecR (RecF–RecO–RecR); (iii) RecF interacts with Ssb protein in the presence of RecO. These data suggested that RecO mediates the interactions of RecF protein with RecR and with Ssb proteins. Incubation of RecF, RecO, RecR, and Ssb proteins resulted in the formation of RecF–RecO–Ssb complexes; i.e., RecR was excluded. Preincubation of RecF, RecO, and RecR proteins prior to addition of Ssb protein resulted in the formation of complexes consisting of RecF, RecO, RecR, and Ssb proteins. These data suggest that one role of RecF is to stabilize the interaction of RecR with RecO in the presence of Ssb protein. Finally, we found that interactions of RecF with RecO are lost in the presence of ATP. We discuss these results to explain how the RecF–RecO–RecR complex functions as an anti-Ssb factor.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A sensitive and rapid in situ method was developed to visualize sites of single-stranded (ss) DNA in cultured cells and in experimental test animals. Anti-bromodeoxyuridine antibody recognizes the halogenated base analog incorporated into chromosomal DNA only when substituted DNA is in the single strand form. After treatment of cells with DNA-damaging agents or γ irradiation, ssDNA molecules form nuclear foci in a dose-dependent manner within 60 min. The mammalian recombination protein Rad51 and the replication protein A then accumulate at sites of ssDNA and form foci, suggesting that these are sites of recombinational DNA repair.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abnormal expression of major histocompatibility complex (MHC) class I and class II in various tissues is associated with autoimmune disease. Autoimmune responses can be triggered by viral infections or tissue injuries. We show that the ability of a virus or a tissue injury to increase MHC gene expression is duplicated by any fragment of double-stranded (ds) DNA or dsRNA introduced into the cytoplasm of nonimmune cells. Activation is sequence-independent, is induced by ds polynucleotides as small as 25 bp in length, and is not duplicated by single-stranded polynucleotides. In addition to causing abnormal MHC expression, the ds nucleic acids increase the expression of genes necessary for antigen processing and presentation: proteasome proteins (e.g., LMP2), transporters of antigen peptides; invariant chain, HLA-DM, and the costimulatory molecule B7.1. The mechanism is different from and additive to that of γ-interferon (γIFN), i.e., ds polynucleotides increase class I much more than class II, whereas γIFN increases class II more than class I. The ds nucleic acids also induce or activate Stat1, Stat3, mitogen-activated protein kinase, NF-κB, the class II transactivator, RFX5, and the IFN regulatory factor 1 differently from γIFN. CpG residues are not responsible for this effect, and the action of the ds polynucleotides could be shown in a variety of cell types in addition to thyrocytes. We suggest that this phenomenon is a plausible mechanism that might explain how viral infection of tissues or tissue injury triggers autoimmune disease; it is potentially relevant to host immune responses induced during gene therapy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Protein folding is a grand challenge of the postgenomic era. In this paper, 58 folding events sampled during 47 molecular dynamics trajectories for a total simulation time of more than 4 μs provide an atomic detail picture of the folding of a 20-residue synthetic peptide with a stable three-stranded antiparallel β-sheet fold. The simulations successfully reproduce the NMR solution conformation, irrespective of the starting structure. The sampling of the conformational space is sufficient to determine the free energy surface and localize the minima and transition states. The statistically predominant folding pathway involves the formation of contacts between strands 2 and 3, starting with the side chains close to the turn, followed by association of the N-terminal strand onto the preformed 2–3 β-hairpin. The folding mechanism presented here, formation of a β-hairpin followed by consolidation, is in agreement with a computational study of the free energy surface of another synthetic three-stranded antiparallel β-sheet by Bursulaya and Brooks [(1999) J. Am. Chem. Soc. 121, 9947–9951]. Hence, it might hold in general for antiparallel β-sheets with short turns.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report single-molecule measurements on the folding and unfolding conformational equilibrium distributions and dynamics of a disulfide crosslinked version of the two-stranded coiled coil from GCN4. The peptide has a fluorescent donor and acceptor at the N termini of its two chains and a Cys disulfide near its C terminus. Thus, folding brings the two N termini of the two chains close together, resulting in an enhancement of fluorescent resonant energy transfer. End-to-end distance distributions have thus been characterized under conditions where the peptide is nearly fully folded (0 M urea), unfolded (7.4 M urea), and in dynamic exchange between folded and unfolded states (3.0 M urea). The distributions have been compared for the peptide freely diffusing in solution and deposited onto aminopropyl silanized glass. As the urea concentration is increased, the mean end-to-end distance shifts to longer distances both in free solution and on the modified surface. The widths of these distributions indicate that the molecules are undergoing millisecond conformational fluctuations. Under all three conditions, these fluctuations gave nonexponential correlations on 1- to 100-ms time scale. A component of the correlation decay that was sensitive to the concentration of urea corresponded to that measured by bulk relaxation kinetics. The trajectories provided effective intramolecular diffusion coefficients as a function of the end-to-end distances for the folded and unfolded states. Single-molecule folding studies provide information concerning the distributions of conformational states in the folded, unfolded, and dynamically interconverting states.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ectodomain of the Ebola virus Gp2 glycoprotein was solubilized with a trimeric, isoleucine zipper derived from GCN4 (pIIGCN4) in place of the hydrophobic fusion peptide at the N terminus. This chimeric molecule forms a trimeric, highly α-helical, and very thermostable molecule, as determined by chemical crosslinking and circular dichroism. Electron microscopy indicates that Gp2 folds into a rod-like structure like influenza HA2 and HIV-1 gp41, providing further evidence that viral fusion proteins from diverse families such as Orthomyxoviridae (Influenza), Retroviridae (HIV-1), and Filoviridae (Ebola) share common structural features, and suggesting a common membrane fusion mechanism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Homologous recombination in Saccharomyces cerevisiae depends critically on RAD52 function. In vitro, Rad52 protein preferentially binds single-stranded DNA (ssDNA), mediates annealing of complementary ssDNA, and stimulates Rad51 protein-mediated DNA strand exchange. Replication protein A (RPA) is a ssDNA-binding protein that is also crucial to the recombination process. Herein we report that Rad52 protein effects the annealing of RPA–ssDNA complexes, complexes that are otherwise unable to anneal. The ability of Rad52 protein to promote annealing depends on both the type of ssDNA substrate and ssDNA binding protein. RPA allows, but slows, Rad52 protein-mediated annealing of oligonucleotides. In contrast, RPA is almost essential for annealing of longer plasmid-sized DNA but has little effect on the annealing of poly(dT) and poly(dA), which are relatively long DNA molecules free of secondary structure. These results suggest that one role of RPA in Rad52 protein-mediated annealing is the elimination of DNA secondary structure. However, neither Escherichia coli ssDNA binding protein nor human RPA can substitute in this reaction, indicating that RPA has a second role in this process, a role that requires specific RPA–Rad52 protein interactions. This idea is confirmed by the finding that RPA, which is complexed with nonhomologous ssDNA, inhibits annealing but the human RPA–ssDNA complex does not. Finally, we present a model for the early steps of the repair of double-strand DNA breaks in yeast.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

M2 is a double-stranded RNA (dsRNA) element occurring in the hypovirulent isolate Rhs 1A1 of the plant pathogenic basidiomycete Rhizoctonia solani. Rhs 1A1 originated as a sector of the virulent field isolate Rhs 1AP, which contains no detectable amount of the M2 dsRNA. The complete sequence (3,570 bp) of the M2 dsRNA has been determined. A 6.9-kbp segment of total DNA from either Rhs 1A1 or Rhs 1AP hybridizes with an M2-specific cDNA probe. The sequences of M2 dsRNA and of PCR products generated from Rhs 1A1 total DNA were found to be identical. Thus this report describes a fungal host containing full-length DNA copies of a dsRNA element. A major portion of the M2 dsRNA is located in the cytoplasm, whereas a smaller amount is found in mitochondria. Based on either the universal or the mitochondrial genetic code of filamentous fungi, one strand of M2 encodes a putative protein of 754 amino acids. The resulting polypeptide has all four motifs of a dsRNA viral RNA-dependent RNA polymerase (RDRP) and is phylogenetically related to the RDRP of a mitochondrial dsRNA associated with hypovirulence in strain NB631 of Cryphonectria parasitica, incitant of chestnut blight. This polypeptide also has significant sequence similarity with two domains of a pentafunctional polypeptide, which catalyzes the five central steps of the shikimate pathway in yeast and filamentous fungi.