994 resultados para spine modeling
Resumo:
Business Process Management describes a holistic management approach for the systematic design, modeling, execution, validation, monitoring and improvement of organizational business processes. Traditionally, most attention within this community has been given to control-flow aspects, i.e., the ordering and sequencing of business activities, oftentimes in isolation with regards to the context in which these activities occur. In this paper, we propose an approach that allows executable process models to be integrated with Geographic Information Systems. This approach enables process models to take geospatial and other geographic aspects into account in an explicit manner both during the modeling phase and the execution phase. We contribute a structured modeling methodology, based on the well-known Business Process Model and Notation standard, which is formalized by means of a mapping to executable Colored Petri nets. We illustrate the feasibility of our approach by means of a sustainability-focused case example of a process with important ecological concerns.
Resumo:
In this paper, dynamic modeling and simulation of the hydropurification reactor in a purified terephthalic acid production plant has been investigated by gray-box technique to evaluate the catalytic activity of palladium supported on carbon (0.5 wt.% Pd/C) catalyst. The reaction kinetics and catalyst deactivation trend have been modeled by employing artificial neural network (ANN). The network output has been incorporated with the reactor first principle model (FPM). The simulation results reveal that the gray-box model (FPM and ANN) is about 32 percent more accurate than FPM. The model demonstrates that the catalyst is deactivated after eleven months. Moreover, the catalyst lifetime decreases about two and half months in case of 7 percent increase of reactor feed flowrate. It is predicted that 10 percent enhancement of hydrogen flowrate promotes catalyst lifetime at the amount of one month. Additionally, the enhancement of 4-carboxybenzaldehyde concentration in the reactor feed improves CO and benzoic acid synthesis. CO is a poison to the catalyst, and benzoic acid might affect the product quality. The model can be applied into actual working plants to analyze the Pd/C catalyst efficient functioning and the catalytic reactor performance.
Resumo:
Organizational and technological systems analysis and design practices such as process modeling have received much attention in recent years. However, while knowledge about related artifacts such as models, tools, or grammars has substantially matured, little is known about the actual tasks and interaction activities that are conducted as part of analysis and design acts. In particular, key role of the facilitator has not been researched extensively to date. In this paper, we propose a new conceptual framework that can be used to examine facilitation behaviors in process modeling projects. The framework distinguishes four behavioral styles in facilitation (the driving engineer, the driving artist, the catalyzing engineer, and the catalyzing artist) that a facilitator can adopt. To distinguish between the four styles, we provide a set of ten behavioral anchors that underpin facilitation behaviors. We also report on a preliminary empirical exploration of our framework through interviews with experienced analysts in six modeling cases. Our research provides a conceptual foundation for an emerging theory for describing and explaining different behaviors associated with process modeling facilitation, provides first preliminary empirical results about facilitation in modeling projects, and provides a fertile basis for examining facilitation in other conceptual modeling activities.
Resumo:
The present contribution deals with the numerical modelling of railway track-supporting systems-using coupled finite-infinite elements-to represent the near and distant field stress distribution, and also employing a thin layer interface element to account for the interfacial behaviour between sleepers and ballast. To simulate the relative debonding, slipping and crushing at the contact area between sleepers and ballast, a modified Mohr-Coulomb criterion was adopted. Further more an attempt was made to consider the elasto plastic materials’ non-linearity of the railway track supporting media by employing different constitutive models to represent steel, concrete and other supporting materials. It is seen that during an incremental-iterative mode of load application, the yielding initially started from the edge of the sleepers and then flowed vertically downwards and spread towards the centre of the railway supporting system.
Resumo:
Draglines are extremely large machines that are widely used in open-cut coal mines for overburden stripping. Since 1994 we have been working toward the development of a computer control system capable of automatically driving a dragline for a large portion of its operating cycle. This has necessitated the development and experimental evaluation of sensor systems, machines models, closed-loop control controllers, and an operator interface. This paper describes our steps toward the goal through scale-model and full-scale field experimentation.
Resumo:
Power line inspection is a vital function for electricity supply companies but it involves labor-intensive and expensive procedures which are tedious and error-prone for humans to perform. A possible solution is to use an unmanned aerial vehicle (UAV) equipped with video surveillance equipment to perform the inspection. This paper considers how a small, electrically driven rotorcraft conceived for this application could be controlled by visually tracking the overhead supply lines. A dynamic model for a ducted-fan rotorcraft is presented and used to control the action of an Air Vehicle Simulator (AVS), consisting of a cable-array robot. Results show how visual data can be used to determine, and hence regulate in closed loop, the simulated vehicle’s position relative to the overhead lines.
Resumo:
Rowers have and accrue greater lumbar spine bone mineral density (BMD) associated with mechanical loading produced during rowing. The aim of this study was to estimate the mechanical loading generated at the lumbar spine (LS) that is apparently providing an osteogenic benefit. The cohort comprised 14 female rowers (average age: 19.7yrs; height: 170.9 cm, weight: 59.5 kg) and 14 female matched controls (average age: 20.9 m yrs; height: 167.5 cm; weight: 58.1 kg). BMD was assessed using the Hologic QDR 2000+ bone densitometer, indicating higher lumbar spine BMD in the rowers compared to the control subjects (1,069 +/- 0.1 vs. 1,027 +/- 0.1 g/cm2). No significant difference existed for BMD at any other site. All rowers performed a six-minute simulated race on a Concept II rowing ergometer. Mechanical loading generated at the lumbar spine during this task was assessed using a two-dimensional model of the spine, enabling the calculation of the compressive and shear forces at L4/L5. The shear force was the joint reaction force perpendicular to the spine at the L4/L5 joint. Peak compressive and shear force at the lumbar spine of the rowers were 2,694 +/- 609 (N) and 660 +/- 117 (N), respectively. Peak compressive force at the LS relative to body weight was 4.6 times body weight. The literature would suggest that forces of this magnitude, generated at the LS during maximal rowing, may be contributing to the site specific higher LS BMD found in the rowers.
Resumo:
BACKGROUND High magnitude loads and unusual loading regimes are two important determinants for increasing bone mass. Past research demonstrated that positive Gz-induced loading, providing high loads in an unaccustomed manner, had an osteogenic effect on bone. Another determinant of bone mass is that the bone response to loading is site specific. This study sought to further investigate the site specific bone response to loading, examining the cervical spine response, the site suspected of experiencing the greatest loading, to high performance flight. METHODS Bone mineral density (BMD) and bone mineral content (BMC) was monitored in 9 RAAF trainee fighter pilots completing an 8-mo flight training course on a PC-9 and 10 age-height-weight-matched controls. RESULTS At completion of the course, the pilots had a significant increase in cervical spine BMD and total body BMC. No significant changes were found for the control group. CONCLUSIONS This study demonstrated that the physical environment associated with flight training may have contributed to a significant increase in cervical spine bone mass in the trainee PC-9 pilots. The increase in bone mass was possibly a response to the strain generated by the daily wearing of helmet and mask assembly under the influence of positive sustained accelerative forces.
Resumo:
Clinically, the Cobb angle method measures the overall scoliotic curve in the coronal plane but does not measure individual vertebra and disc wedging. The contributions of the vertebrae and discs in the growing scoliotic spine were measured using sequential MRI scans to investigate coronal plane deformity progression with growth. Sequential MRI data showed complex patterns of deformity progression. Changes to the wedging of individual vertebrae and discs may occur in patients who have no increase in overall Cobb angle measure; the Cobb method alone may be insufficient to capture the complex mechanisms of deformity progression.
Resumo:
Background The Spine Functional Index (SFI) is a patient reported outcome measure with sound clinimetric properties and clinical viability for the determination of whole-spine impairment. To date, no validated Turkish version is available. The purpose of this study is to cross-culturally adapted the SFI for Turkish-speaking patients (SFI-Tk) and determine the psychometric properties of reliability, validity and factor structure in a Turkish population with spine musculoskeletal disorders. Methods The SFI English version was culturally adapted and translated into Turkish using a double forward and backward method according to established guidelines. Patients (n = 285, cervical = l29, lumbar = 151, cervical and lumbar region = 5, 73% female, age 45 ± 1) with spine musculoskeletal disorders completed the SFI-Tk at baseline and after a seven day period for test-retest reliability. For criterion validity the Turkish version of the Functional Rating Index (FRI) was used plus the Neck Disability Index (NDI) for cervical patients and the Oswestry Disability Index (ODI) for back patients. Additional psychometric properties were determined for internal consistency (Chronbach’s α), criterion validity and factor structure. Results There was a high degree of internal consistency (α = 0.85, item range 0.80-0.88) and test-retest reliability (r = 0.93, item range = 0.75-0.95). The factor analysis demonstrated a one-factor solution explaining 24.2% of total variance. Criterion validity with the ODI was high (r = 0.71, p < 0.001) while the FRI and NDI were fair (r = 0.52 and r = 0.58, respectively). The SFI-Tk showed no missing responses with the ‘half-mark’ option used in 11.75% of total responses by 77.9% of participants. Measurement error from SEM and MDC90 were respectively 2.96% and 7.12%. Conclusions The SFI-Tk demonstrated a one-factor solution and is a reliable and valid instrument. The SFI-Tk consists of simple and easily understood wording and may be used to assess spine region musculoskeletal disorders in Turkish speaking patients.
Resumo:
Progression of spinal deformity in children was studied with Computed Tomography (CT) and Magnetic Resonance Imaging (MRI) to identify how gravity affects the deformity and to determine the full three-dimensional character of the deformity. The CT study showed that gravity is significant in deformity progression in some patients which has implications for clinical patient management. The world first MRI study showed that the standard clinical measure used to define the extent of the deformity is inadequate and further use of three-dimensional MRI should be considered by spinal surgeons.
Resumo:
Having a clear project definition is crucial for successful construction projects. It affects design quality, project communication between stakeholders and final project performance in terms of cost, schedule and quality. This study examines the relationship between project definition and final project performance through a structural equation model comprising 4 latent constructs and 6 path hypotheses using data from a questionnaire survey of 120 general contractors in the Malaysian construction industry. The results show that in the study population, all three items impact the project performance, but the link between design quality and project performance is indirect. Instead, the clarity of project definition affects project performance indirectly through design quality and project communication and design quality affects project performance indirectly through project communication. The primary contribution is to provide quantitative confirmation of the more general statements made in the literature from around the world and therefore adds to and consolidates existing knowledge. Practical implications derived from the finding are also proposed for various project stakeholders. Furthermore, as lack of the clarity of project definition is a very common occurrence in construction projects globally, these findings have important ramifications for all construction projects in expanding and clarifying existing knowledge on what is needed for the successful delivery of construction projects.
Resumo:
Extreme wind events such as tropical cyclones, tornadoes and storms are more likely to impact the Australian coastal regions due to possible climate changes. Such events can be extremely destructive to building structures, in particular, low-rise buildings with lightweight roofing systems that are commonly made of thin steel roofing sheets and battens. Large wind uplift loads that act on the roofs during high wind events often cause premature roof connection failures. Recent wind damage investigations have shown that roof failures have mostly occurred at the batten to rafter or truss screw connections. In most of these cases, the screw fastener heads pulled through the bottom flanges of thin steel roof battens. This roof connection failure is very critical as both roofing sheets and battens will be lost during the high wind events. Hence, a research study was conducted to investigate this critical pull-through failure using both experimental and numerical methods. This paper presents the details of numerical modeling and the results.