947 resultados para special energy of compression and decompression
Resumo:
This dissertation explores the viability of invitational rhetoric as a mode of advocacy for sustainable energy use in the residential built environment. The theoretical foundations for this study join ecofeminist concepts and commitments with the conditions and resources of invitational rhetoric, developing in particular the rhetorical potency of the concepts of re-sourcement and enfoldment. The methodological approach is autoethnography using narrative reflection and journaling, both adapted to and developed within the autoethnographic project. Through narrative reflection, the author explores her lived experiences in advocating for energy-responsible residential construction in the Keweenaw Peninsula of Michigan. The analysis reveals the opportunities for cooperative, collaborative advocacy and the struggle against traditional conventions of persuasive advocacy, particularly the centrality of the rhetor. The author also conducted two field trips to India, primarily the state of Kerala. Drawing on autoethnographic journaling, the analysis highlights the importance of sensory relations in lived advocacy and the resonance of everyday Indian culture to invitational principles. Based on field research, the dissertation proposes autoethnography as a critical development in encouraging invitational rhetoric as an alternative mode of effecting change. The invitational force of autoethnography is evidenced in portraying the material advocacy of the built environment itself, specifically the sensual experience of material arrangements and ambience, as well as revealing the corporeality of advocacy, that is, the body as the site of invitational engagement, emotional encounter, and sensory experience. This study concludes that vulnerability of self in autoethnographic work and the vulnerability of rhetoric as invitational constitute the basis for transformation. The dissertation confirms the potential of an ecofeminist invitational advocacy conveyed autoethnographically for transforming perceptions and use of energy in a smaller-scale residential environment appropriate for culture, climate, and ultimately part of the challenge of sustaining life on this planet.
Resumo:
Several methods have been investigated, with some success, for treating scrap brass to recover copper and zinc, either as pure metals or as salts of the metals. One of the more promising of these methods is electrolysis in sulfate solution for the recovery of pure copper and zinc.
Resumo:
Graphene, which is a two-dimensional carbon material, exhibits unique properties that promise its potential applications in photovoltaic devices. Dye-sensitized solar cell (DSSC) is a representative of the third generation photovoltaic devices. Therefore, it is important to synthesize graphene with special structures, which possess excellent properties for dye-sensitized solar cells. This dissertation research was focused on (1) the effect of oxygen content on the structure of graphite oxide, (2) the stability of graphene oxide solution, (3) the application of graphene precipitate from graphene oxide solution as counter electrode for DSSCs, (4) the development of a novel synthesis method for the three-dimensional graphene with honeycomb-like structure, and (5) the exploration of honeycomb structured graphene (HSG) as counter electrodes for DSSCs. Graphite oxide is a crucial precursor to synthesize graphene sheets via chemical exfoliation method. The relationship between the oxygen content and the structures of graphite oxides was still not explored. In this research, the oxygen content of graphite oxide is tuned by changing the oxidation time and the effect of oxygen content on the structure of graphite oxide was evaluated. It has been found that the saturated ratio of oxygen to carbon is 0.47. The types of functional groups in graphite oxides, which are epoxy, hydroxyl, and carboxylgroups, are independent of oxygen content. However, the interplanar space and BET surface area of graphite oxide linearly increases with increasing O/C ratio. Graphene oxide (GO) can easily dissolve in water to form a stable homogeneous solution, which can be used to fabricate graphene films and graphene based composites. This work is the first research to evaluate the stability of graphene oxide solution. It has been found that the introduction of strong electrolytes (HCl, LiOH, LiCl) into GO solution can cause GO precipitation. This indicates that the electrostatic repulsion plays a critical role in stabilizing aqueous GO solution. Furthermore, the HCl-induced GO precipitation is a feasible approach to deposit GO sheets on a substrate as a Pt-free counter electrode for a dye-sensitized solar cell (DSSC), which exhibited 1.65% of power conversion efficiency. To explore broad and practical applications, large-scale synthesis with controllable integration of individual graphene sheets is essential. A novel strategy for the synthesis of graphene sheets with three-dimensional (3D) Honeycomb-like structure has been invented in this project based on a simple and novel chemical reaction (Li2O and CO to graphene and Li2CO3). The simultaneous formation of Li2CO3 with graphene not only can isolate graphene sheets from each other to prevent graphite formation during the process, but also determine the locally curved shape of graphene sheets. After removing Li2CO3, 3D graphene sheets with a honeycomb-like structure were obtained. This would be the first approach to synthesize 3D graphene sheets with a controllable shape. Furthermore, it has been demonstrated that the 3D Honeycomb-Structured Graphene (HSG) possesses excellent electrical conductivity and high catalytic activity. As a result, DSSCs with HSG counter electrodes exhibit energy conversion efficiency as high as 7.8%, which is comparable to that of an expensive noble Pt electrode.
Resumo:
When examined petrographically the granites of Oklahoma show a marked similarity to the granites of Southeastern Missouri. The same heavy accessory mineral suites are present in the granites of both regions and include: fluorite, zircon, apatite, titanite and epidote. This similarity was further shown by the actual correlation of the heavy mineral suites by types, these types being, based on the heavy mineral distributions of the Missouri Granites.
Resumo:
OBJECTIVE: The effects of mechanical deformation of intact cartilage tissue on chondrocyte biosynthesis in situ have been well documented, but the mechanotransduction pathways that regulate such phenomena have not been elucidated completely. The goal of this study was to examine the effects of tissue deformation on the morphology of a range of intracellular organelles which play a major role in cell biosynthesis and metabolism. DESIGN: Using chemical fixation, high pressure freezing, and electron microscopy, we imaged chondrocytes within mechanically compressed cartilage explants at high magnification and quantitatively and qualitatively assessed changes in organelle volume and shape caused by graded levels of loading. RESULTS: Compression of the tissue caused a concomitant reduction in the volume of the extracellular matrix (ECM), chondrocyte, nucleus, rough endoplasmic reticulum, and mitochondria. Interestingly, however, the Golgi apparatus was able to resist loss of intraorganelle water and retain a portion of its volume relative to the remainder of the cell. These combined results suggest that a balance between intracellular mechanical and osmotic gradients govern the changes in shape and volume of the organelles as the tissue is compressed. CONCLUSIONS: Our results lead to the interpretive hypothesis that organelle volume changes appear to be driven mainly by osmotic interactions while shape changes are mediated by structural factors, such as cytoskeletal interactions that may be linked to extracellular matrix deformations. The observed volume and shape changes of the chondrocyte organelles and the differential behavior between organelles during tissue compression provide evidence for an important mechanotransduction pathway linking translational and post-translational events (e.g., elongation and sulfation of glycosaminoglycans (GAGs) in the Golgi) to cell deformation.
Resumo:
Sequential studies of osteopenic bone disease in small animals require the availability of non-invasive, accurate and precise methods to assess bone mineral content (BMC) and bone mineral density (BMD). Dual-energy X-ray absorptiometry (DXA), which is currently used in humans for this purpose, can also be applied to small animals by means of adapted software. Precision and accuracy of DXA was evaluated in 10 rats weighing 50-265 g. The rats were anesthetized with a mixture of ketamine-xylazine administrated intraperitoneally. Each rat was scanned six times consecutively in the antero-posterior incidence after repositioning using the rat whole-body software for determination of whole-body BMC and BMD (Hologic QDR 1000, software version 5.52). Scan duration was 10-20 min depending on rat size. After the last measurement, rats were sacrificed and soft tissues were removed by dermestid beetles. Skeletons were then scanned in vitro (ultra high resolution software, version 4.47). Bones were subsequently ashed and dissolved in hydrochloric acid and total body calcium directly assayed by atomic absorption spectrophotometry (TBCa[chem]). Total body calcium was also calculated from the DXA whole-body in vivo measurement (TBCa[DXA]) and from the ultra high resolution measurement (TBCa[UH]) under the assumption that calcium accounts for 40.5% of the BMC expressed as hydroxyapatite. Precision error for whole-body BMC and BMD (mean +/- S.D.) was 1.3% and 1.5%, respectively. Simple regression analysis between TBCa[DXA] or TBCa[UH] and TBCa[chem] revealed tight correlations (n = 0.991 and 0.996, respectively), with slopes and intercepts which were significantly different from 1 and 0, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)
Resumo:
BACKGROUND Mortality risk for people with chronic kidney disease is substantially greater than that for the general population, increasing to a 7-fold greater risk for those on dialysis therapy. Higher body mass index, generally due to higher energy intake, appears protective for people on dialysis therapy, but the relationship between energy intake and survival in those with reduced kidney function is unknown. STUDY DESIGN Prospective cohort study with a median follow-up of 14.5 (IQR, 11.2-15.2) years. SETTING & PARTICIPANTS Blue Mountains Area, west of Sydney, Australia. Participants in the general community enrolled in the Blue Mountains Eye Study (n=2,664) who underwent a detailed interview, food frequency questionnaire, and physical examination including body weight, height, blood pressure, and laboratory tests. PREDICTORS Relative energy intake, food components (carbohydrates, total sugars, fat, protein, and water), and estimated glomerular filtration rate (eGFR). Relative energy intake was dichotomized at 100%, and eGFR, at 60mL/min/1.73m(2). OUTCOMES All-cause and cardiovascular mortality. MEASUREMENTS All-cause and cardiovascular mortality using unadjusted and adjusted Cox proportional regression models. RESULTS 949 people died during follow-up, 318 of cardiovascular events. In people with eGFR<60mL/min/1.73m(2) (n=852), there was an increased risk of all-cause mortality (HR, 1.48; P=0.03), but no increased risk of cardiovascular mortality (HR, 1.59; P=0.1) among those with higher relative energy intake compared with those with lower relative energy intake. Increasing intake of carbohydrates (HR per 100g/d, 1.50; P=0.04) and total sugars (HR per 100g/d, 1.62; P=0.03) was associated significantly with increased risk of cardiovascular mortality. LIMITATIONS Under-reporting of energy intake, baseline laboratory and food intake values only, white population. CONCLUSIONS Increasing relative energy intake was associated with increased all-cause mortality in patients with eGFR<60mL/min/1.73m(2). This effect may be mediated by increasing total sugars intake on subsequent cardiovascular events.
Resumo:
A search has been performed for the experimental signature of an isolated photon with high transverse momentum, at least one jet identified as originating from a bottom quark, and high missing transverse momentum. Such a final state may originate from supersymmetric models with gauge-mediated supersymmetry breaking in events in which one of a pair of higgsino-like neutralinos decays into a photon and a gravitino while the other decays into a Higgs boson and a gravitino. The search is performed using the full dataset of 7 TeV proton-proton collisions recorded with the ATLAS detector at the LHC in 2011, corresponding to an integrated luminosity of 4.7 fb(-1). A total of 7 candidate events are observed while 7.5 +/- 2.2 events are expected from the Standard Model background. The results of the search are interpreted in the context of general gauge mediation to exclude certain regions of a benchmark plane for higgsino-like neutralino production.
Resumo:
Transcutaneous needle decompression of the caecum through the right flank is a valuable, routine procedure performed to resolve cases of large intestinal tympany. Nevertheless, it can be the cause of potentially life-threatening complications as highlighted by the 3 cases presented in this case report. Abscess formation, septic peritonitis and haemorrhage following needle decompression are described.