883 resultados para spatiotemporal epidemic prediction model
Resumo:
This thesis considers a three- dimensional numerical model based on 3-D Navier— Stokes and continuity equations involving various wind speeds (North west), water surface levels, horizontal shier stresses, eddy viscosity, densities of oil and gas condensate- water mixture flows. The model is used to simulate the prediction of the surface movement of oil and gas condensate slicks from spill accident in the north coasts of Persian Gulf.
Resumo:
Ionic liquids (ILs) have attracted great attention, from both industry and academia, as alternative fluids for very different types of applications. The large number of cations and anions allow a wide range of physical and chemical characteristics to be designed. However, the exhaustive measurement of all these systems is impractical, thus requiring the use of a predictive model for their study. In this work, the predictive capability of the conductor-like screening model for real solvents (COSMO-RS), a model based on unimolecular quantum chemistry calculations, was evaluated for the prediction water activity coefficient at infinite dilution, gamma(infinity)(w), in several classes of ILs. A critical evaluation of the experimental and predicted data using COSMO-RS was carried out. The global average relative deviation was found to be 27.2%, indicating that the model presents a satisfactory prediction ability to estimate gamma(infinity)(w) in a broad range of ILs. The results also showed that the basicity of the ILs anions plays an important role in their interaction with water, and it considerably determines the enthalpic behavior of the binary mixtures composed by Its and water. Concerning the cation effect, it is possible to state that generally gamma(infinity)(w) increases with the cation size, but it is shown that the cation-anion interaction strength is also important and is strongly correlated to the anion ability to interact with water. The results here reported are relevant in the understanding of ILs-water interactions and the impact of the various structural features of its on the gamma(infinity)(w) as these allow the development of guidelines for the choice of the most suitable lLs with enhanced interaction with water.
Resumo:
Models based on species distributions are widely used and serve important purposes in ecology, biogeography and conservation. Their continuous predictions of environmental suitability are commonly converted into a binary classification of predicted (or potential) presences and absences, whose accuracy is then evaluated through a number of measures that have been the subject of recent reviews. We propose four additional measures that analyse observation-prediction mismatch from a different angle – namely, from the perspective of the predicted rather than the observed area – and add to the existing toolset of model evaluation methods. We explain how these measures can complete the view provided by the existing measures, allowing further insights into distribution model predictions. We also describe how they can be particularly useful when using models to forecast the spread of diseases or of invasive species and to predict modifications in species’ distributions under climate and land-use change
Resumo:
To evaluate the correlation between neck circumference and insulin resistance and components of metabolic syndrome in adolescents with different adiposity levels and pubertal stages, as well as to determine the usefulness of neck circumference to predict insulin resistance in adolescents. Cross-sectional study with 388 adolescents of both genders from ten to 19 years old. The adolescents underwent anthropometric and body composition assessment, including neck and waist circumferences, and biochemical evaluation. The pubertal stage was obtained by self-assessment, and the blood pressure, by auscultation. Insulin resistance was evaluated by the Homeostasis Model Assessment-Insulin Resistance. The correlation between two variables was evaluated by partial correlation coefficient adjusted for the percentage of body fat and pubertal stage. The performance of neck circumference to identify insulin resistance was tested by Receiver Operating Characteristic Curve. After the adjustment for percentage body fat and pubertal stage, neck circumference correlated with waist circumference, blood pressure, triglycerides and markers of insulin resistance in both genders. The results showed that the neck circumference is a useful tool for the detection of insulin resistance and changes in the indicators of metabolic syndrome in adolescents. The easiness of application and low cost of this measure may allow its use in Public Health services.
Resumo:
Identification, prediction, and control of a system are engineering subjects, regardless of the nature of the system. Here, the temporal evolution of the number of individuals with dengue fever weekly recorded in the city of Rio de Janeiro, Brazil, during 2007, is used to identify SIS (susceptible-infective-susceptible) and SIR (susceptible-infective-removed) models formulated in terms of cellular automaton (CA). In the identification process, a genetic algorithm (GA) is utilized to find the probabilities of the state transition S -> I able of reproducing in the CA lattice the historical series of 2007. These probabilities depend on the number of infective neighbors. Time-varying and non-time-varying probabilities, three different sizes of lattices, and two kinds of coupling topology among the cells are taken into consideration. Then, these epidemiological models built by combining CA and GA are employed for predicting the cases of sick persons in 2008. Such models can be useful for forecasting and controlling the spreading of this infectious disease.
Resumo:
Various methods are currently used in order to predict shallow landslides within the catchment scale. Among them, physically based models present advantages associated with the physical description of processes by means of mathematical equations. The main objective of this research is the prediction of shallow landslides using TRIGRS model, in a pilot catchment located at Serra do Mar mountain range, Sao Paulo State, southeastern Brazil. Susceptibility scenarios have been simulated taking into account different mechanical and hydrological values. These scenarios were analysed based on a landslide scars map from the January 1985 event, upon which two indexes were applied: Scars Concentration (SC - ratio between the number of cells with scars, in each class, and the total number of cells with scars within the catchment) and Landslide Potential (LP - ratio between the number of cells with scars, in each class, and the total number of cells in that same class). The results showed a significant agreement between the simulated scenarios and the scar's map. In unstable areas (SF <= 1), the SC values exceeded 50% in all scenarios. Based on the results, the use of this model should be considered an important tool for shallow landslide prediction, especially in areas where mechanical and hydrological properties of the materials are not well known.
Resumo:
In Natural Language Processing (NLP) symbolic systems, several linguistic phenomena, for instance, the thematic role relationships between sentence constituents, such as AGENT, PATIENT, and LOCATION, can be accounted for by the employment of a rule-based grammar. Another approach to NLP concerns the use of the connectionist model, which has the benefits of learning, generalization and fault tolerance, among others. A third option merges the two previous approaches into a hybrid one: a symbolic thematic theory is used to supply the connectionist network with initial knowledge. Inspired on neuroscience, it is proposed a symbolic-connectionist hybrid system called BIO theta PRED (BIOlogically plausible thematic (theta) symbolic-connectionist PREDictor), designed to reveal the thematic grid assigned to a sentence. Its connectionist architecture comprises, as input, a featural representation of the words (based on the verb/noun WordNet classification and on the classical semantic microfeature representation), and, as output, the thematic grid assigned to the sentence. BIO theta PRED is designed to ""predict"" thematic (semantic) roles assigned to words in a sentence context, employing biologically inspired training algorithm and architecture, and adopting a psycholinguistic view of thematic theory.
Resumo:
By means of numerical simulations and epidemic analysis, the transition point of the stochastic asynchronous susceptible-infected-recovered model on a square lattice is found to be c(0)=0.176 500 5(10), where c is the probability a chosen infected site spontaneously recovers rather than tries to infect one neighbor. This point corresponds to an infection/recovery rate of lambda(c)=(1-c(0))/c(0)=4.665 71(3) and a net transmissibility of (1-c(0))/(1+3c(0))=0.538 410(2), which falls between the rigorous bounds of the site and bond thresholds. The critical behavior of the model is consistent with the two-dimensional percolation universality class, but local growth probabilities differ from those of dynamic percolation cluster growth, as is demonstrated explicitly.
Resumo:
We numerically study the dynamics of a discrete spring-block model introduced by Olami, Feder, and Christensen (OFC) to mimic earthquakes and investigate to what extent this simple model is able to reproduce the observed spatiotemporal clustering of seismicity. Following a recently proposed method to characterize such clustering by networks of recurrent events [J. Davidsen, P. Grassberger, and M. Paczuski, Geophys. Res. Lett. 33, L11304 (2006)], we find that for synthetic catalogs generated by the OFC model these networks have many nontrivial statistical properties. This includes characteristic degree distributions, very similar to what has been observed for real seismicity. There are, however, also significant differences between the OFC model and earthquake catalogs, indicating that this simple model is insufficient to account for certain aspects of the spatiotemporal clustering of seismicity.
Resumo:
The results of a combined experimental program and numerical modeling program to evaluate the behavior of ungrouted hollow concrete blocks prisms under uniaxial compression are addressed. In the numerical program, three distinct approaches have been considered using a continuum model with a smeared approach, namely plane-stress, plane-strain and three-dimensional conditions. The response of the numerical simulations is compared with experimental data of masonry prisms using concrete blocks specifically designed for this purpose. The elastic and inelastic parameters were acquired from laboratory tests on concrete and mortar samples that constitute the blocks and the bed joint of the prisms. The results from the numerical simulations are discussed with respect to the ability to reproduce the global response of the experimental tests, and with respect to the failure behavior obtained. Good agreement between experimental and numerical results was found for the peak load and for the failure mode using the three-dimensional model, on four different sets of block/mortar types. Less good agreement was found for plain stress and plain strain models.
Resumo:
The objective of the present work is to propose a numerical and statistical approach, using computational fluid dynamics, for the study of the atmospheric pollutant dispersion. Modifications in the standard k-epsilon turbulence model and additional equations for the calculation of the variance of concentration are introduced to enhance the prediction of the flow field and scalar quantities. The flow field, the mean concentration and the variance of a flow over a two-dimensional triangular hill, with a finite-size point pollutant source, are calculated by a finite volume code and compared with published experimental results. A modified low Reynolds k-epsilon turbulence model was employed in this work, using the constant of the k-epsilon model C(mu)=0.03 to take into account the inactive atmospheric turbulence. The numerical results for the velocity profiles and the position of the reattachment point are in good agreement with the experimental results. The results for the mean and the variance of the concentration are also in good agreement with experimental results from the literature. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
There are several ways to attempt to model a building and its heat gains from external sources as well as internal ones in order to evaluate a proper operation, audit retrofit actions, and forecast energy consumption. Different techniques, varying from simple regression to models that are based on physical principles, can be used for simulation. A frequent hypothesis for all these models is that the input variables should be based on realistic data when they are available, otherwise the evaluation of energy consumption might be highly under or over estimated. In this paper, a comparison is made between a simple model based on artificial neural network (ANN) and a model that is based on physical principles (EnergyPlus) as an auditing and predicting tool in order to forecast building energy consumption. The Administration Building of the University of Sao Paulo is used as a case study. The building energy consumption profiles are collected as well as the campus meteorological data. Results show that both models are suitable for energy consumption forecast. Additionally, a parametric analysis is carried out for the considered building on EnergyPlus in order to evaluate the influence of several parameters such as the building profile occupation and weather data on such forecasting. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Accurate price forecasting for agricultural commodities can have significant decision-making implications for suppliers, especially those of biofuels, where the agriculture and energy sectors intersect. Environmental pressures and high oil prices affect demand for biofuels and have reignited the discussion about effects on food prices. Suppliers in the sugar-alcohol sector need to decide the ideal proportion of ethanol and sugar to optimise their financial strategy. Prices can be affected by exogenous factors, such as exchange rates and interest rates, as well as non-observable variables like the convenience yield, which is related to supply shortages. The literature generally uses two approaches: artificial neural networks (ANNs), which are recognised as being in the forefront of exogenous-variable analysis, and stochastic models such as the Kalman filter, which is able to account for non-observable variables. This article proposes a hybrid model for forecasting the prices of agricultural commodities that is built upon both approaches and is applied to forecast the price of sugar. The Kalman filter considers the structure of the stochastic process that describes the evolution of prices. Neural networks allow variables that can impact asset prices in an indirect, nonlinear way, what cannot be incorporated easily into traditional econometric models.