924 resultados para spatial data analysis


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Most current 3D landscape visualisation systems either use bespoke hardware solutions, or offer a limited amount of interaction and detail when used in realtime mode. We are developing a modular, data driven 3D visualisation system that can be readily customised to specific requirements. By utilising the latest software engineering methods and bringing a dynamic data driven approach to geo-spatial data visualisation we will deliver an unparalleled level of customisation in near-photo realistic, realtime 3D landscape visualisation. In this paper we show the system framework and describe how this employs data driven techniques. In particular we discuss how data driven approaches are applied to the spatiotemporal management aspect of the application framework, and describe the advantages these convey.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The spatial patterns of discrete beta-amyloid (Abeta) deposits in brain tissue from patients with Alzheimer disease (AD) were studied using a statistical method based on linear regression, the results being compared with the more conventional variance/mean (V/M) method. Both methods suggested that Abeta deposits occurred in clusters (400 to <12,800 mu m in diameter) in all but 1 of the 42 tissues examined. In many tissues, a regular periodicity of the Abeta deposit clusters parallel to the tissue boundary was observed. In 23 of 42 (55%) tissues, the two methods revealed essentially the same spatial patterns of Abeta deposits; in 15 of 42 (36%), the regression method indicated the presence of clusters at a scale not revealed by the V/M method; and in 4 of 42 (9%), there was no agreement between the two methods. Perceived advantages of the regression method are that there is a greater probability of detecting clustering at multiple scales, the dimension of larger Abeta clusters can be estimated more accurately, and the spacing between the clusters may be estimated. However, both methods may be useful, with the regression method providing greater resolution and the V/M method providing greater simplicity and ease of interpretation. Estimates of the distance between regularly spaced Abeta clusters were in the range 2,200-11,800 mu m, depending on tissue and cluster size. The regular periodicity of Abeta deposit clusters in many tissues would be consistent with their development in relation to clusters of neurons that give rise to specific neuronal projections.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Discrete, microscopic lesions are developed in the brain in a number of neurodegenerative diseases. These lesions may not be randomly distributed in the tissue but exhibit a spatial pattern, i.e., a departure from randomness towards regularlity or clustering. The spatial pattern of a lesion may reflect its development in relation to other brain lesions or to neuroanatomical structures. Hence, a study of spatial pattern may help to elucidate the pathogenesis of a lesion. A number of statistical methods can be used to study the spatial patterns of brain lesions. They range from simple tests of whether the distribution of a lesion departs from random to more complex methods which can detect clustering and the size, distribution and spacing of clusters. This paper reviews the uses and limitations of these methods as applied to neurodegenerative disorders, and in particular to senile plaque formation in Alzheimer's disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This article explains first, the reasons why a knowledge of statistics is necessary and describes the role that statistics plays in an experimental investigation. Second, the normal distribution is introduced which describes the natural variability shown by many measurements in optometry and vision sciences. Third, the application of the normal distribution to some common statistical problems including how to determine whether an individual observation is a typical member of a population and how to determine the confidence interval for a sample mean is described.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this second article, statistical ideas are extended to the problem of testing whether there is a true difference between two samples of measurements. First, it will be shown that the difference between the means of two samples comes from a population of such differences which is normally distributed. Second, the 't' distribution, one of the most important in statistics, will be applied to a test of the difference between two means using a simple data set drawn from a clinical experiment in optometry. Third, in making a t-test, a statistical judgement is made as to whether there is a significant difference between the means of two samples. Before the widespread use of statistical software, this judgement was made with reference to a statistical table. Even if such tables are not used, it is useful to understand their logical structure and how to use them. Finally, the analysis of data, which are known to depart significantly from the normal distribution, will be described.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In some studies, the data are not measurements but comprise counts or frequencies of particular events. In such cases, an investigator may be interested in whether one specific event happens more frequently than another or whether an event occurs with a frequency predicted by a scientific model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In any investigation in optometry involving more that two treatment or patient groups, an investigator should be using ANOVA to analyse the results assuming that the data conform reasonably well to the assumptions of the analysis. Ideally, specific null hypotheses should be built into the experiment from the start so that the treatments variation can be partitioned to test these effects directly. If 'post-hoc' tests are used, then an experimenter should examine the degree of protection offered by the test against the possibilities of making either a type 1 or a type 2 error. All experimenters should be aware of the complexity of ANOVA. The present article describes only one common form of the analysis, viz., that which applies to a single classification of the treatments in a randomised design. There are many different forms of the analysis each of which is appropriate to the analysis of a specific experimental design. The uses of some of the most common forms of ANOVA in optometry have been described in a further article. If in any doubt, an investigator should consult a statistician with experience of the analysis of experiments in optometry since once embarked upon an experiment with an unsuitable design, there may be little that a statistician can do to help.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

1. Pearson's correlation coefficient only tests whether the data fit a linear model. With large numbers of observations, quite small values of r become significant and the X variable may only account for a minute proportion of the variance in Y. Hence, the value of r squared should always be calculated and included in a discussion of the significance of r. 2. The use of r assumes that a bivariate normal distribution is present and this assumption should be examined prior to the study. If Pearson's r is not appropriate, then a non-parametric correlation coefficient such as Spearman's rs may be used. 3. A significant correlation should not be interpreted as indicating causation especially in observational studies in which there is a high probability that the two variables are correlated because of their mutual correlations with other variables. 4. In studies of measurement error, there are problems in using r as a test of reliability and the ‘intra-class correlation coefficient’ should be used as an alternative. A correlation test provides only limited information as to the relationship between two variables. Fitting a regression line to the data using the method known as ‘least square’ provides much more information and the methods of regression and their application in optometry will be discussed in the next article.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multiple regression analysis is a complex statistical method with many potential uses. It has also become one of the most abused of all statistical procedures since anyone with a data base and suitable software can carry it out. An investigator should always have a clear hypothesis in mind before carrying out such a procedure and knowledge of the limitations of each aspect of the analysis. In addition, multiple regression is probably best used in an exploratory context, identifying variables that might profitably be examined by more detailed studies. Where there are many variables potentially influencing Y, they are likely to be intercorrelated and to account for relatively small amounts of the variance. Any analysis in which R squared is less than 50% should be suspect as probably not indicating the presence of significant variables. A further problem relates to sample size. It is often stated that the number of subjects or patients must be at least 5-10 times the number of variables included in the study.5 This advice should be taken only as a rough guide but it does indicate that the variables included should be selected with great care as inclusion of an obviously unimportant variable may have a significant impact on the sample size required.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PCA/FA is a method of analyzing complex data sets in which there are no clearly defined X or Y variables. It has multiple uses including the study of the pattern of variation between individual entities such as patients with particular disorders and the detailed study of descriptive variables. In most applications, variables are related to a smaller number of ‘factors’ or PCs that account for the maximum variance in the data and hence, may explain important trends among the variables. An increasingly important application of the method is in the ‘validation’ of questionnaires that attempt to relate subjective aspects of a patients experience with more objective measures of vision.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To determine the factors influencing the distribution of -amyloid (Abeta) deposits in Alzheimer's disease (AD), the spatial patterns of the diffuse, primitive, and classic A deposits were studied from the superior temporal gyrus (STG) to sector CA4 of the hippocampus in six sporadic cases of the disease. In cortical gyri and in the CA sectors of the hippocampus, the Abeta deposits were distributed either in clusters 200-6400 microm in diameter that were regularly distributed parallel to the tissue boundary or in larger clusters greater than 6400 microm in diameter. In some regions, smaller clusters of Abeta deposits were aggregated into larger 'superclusters'. In many cortical gyri, the density of Abeta deposits was positively correlated with distance below the gyral crest. In the majority of regions, clusters of the diffuse, primitive, and classic deposits were not spatially correlated with each other. In two cases, double immunolabelled to reveal the Abeta deposits and blood vessels, the classic Abeta deposits were clustered around the larger diameter vessels. These results suggest a complex pattern of Abeta deposition in the temporal lobe in sporadic AD. A regular distribution of Abeta deposit clusters may reflect the degeneration of specific cortico-cortical and cortico-hippocampal pathways and the influence of the cerebral blood vessels. Large-scale clustering may reflect the aggregation of deposits in the depths of the sulci and the coalescence of smaller clusters.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Exploratory analysis of data seeks to find common patterns to gain insights into the structure and distribution of the data. In geochemistry it is a valuable means to gain insights into the complicated processes making up a petroleum system. Typically linear visualisation methods like principal components analysis, linked plots, or brushing are used. These methods can not directly be employed when dealing with missing data and they struggle to capture global non-linear structures in the data, however they can do so locally. This thesis discusses a complementary approach based on a non-linear probabilistic model. The generative topographic mapping (GTM) enables the visualisation of the effects of very many variables on a single plot, which is able to incorporate more structure than a two dimensional principal components plot. The model can deal with uncertainty, missing data and allows for the exploration of the non-linear structure in the data. In this thesis a novel approach to initialise the GTM with arbitrary projections is developed. This makes it possible to combine GTM with algorithms like Isomap and fit complex non-linear structure like the Swiss-roll. Another novel extension is the incorporation of prior knowledge about the structure of the covariance matrix. This extension greatly enhances the modelling capabilities of the algorithm resulting in better fit to the data and better imputation capabilities for missing data. Additionally an extensive benchmark study of the missing data imputation capabilities of GTM is performed. Further a novel approach, based on missing data, will be introduced to benchmark the fit of probabilistic visualisation algorithms on unlabelled data. Finally the work is complemented by evaluating the algorithms on real-life datasets from geochemical projects.