982 resultados para soil respiration rate
Resumo:
Soil tillage is one of the agricultural practices that may contribute to increase the loss of carbon through emission of CO2 (FCO2). The aim of this study was to investigate the effect of three soil tillage systems on FCO2, soil temperature and soil moisture in a sugarcane area under reform. The experimental area consisted of three tillage plots: conventional tillage (CT), conventional subsoiling (CS), and localized subsoiling (LS). FCO2, soil temperature and soil moisture were measured over a period of 17 days. FCO2 showed the highest value in CT (0.75 g CO2 m(-2) h(-1)). Soil temperature presented no significant difference (p > 0.05) between LS (26.2 degrees C) and CS (25.9 degrees C). Soil moisture was higher in LS (24%), followed by CS (21.8%) and CT (18.3%). A significant correlation (r = -0.71; p < 0.05) between FCO2 and soil temperature was observed only in CT. The conventional tillage presented a total emission (2,864.3 kg CO2 ha(-1)) higher than the emissions observed in CS (1,970.9 kg CO2 ha(-1)) and LS (1,707.7 kg CO2 ha(-1)). The conversion from CT to LS decreased soil CO2 emissions, reducing the contribution of agriculture in increasing the concentration of greenhouse gases in the atmosphere.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A laparoscopia ainda é pouco utilizada como ferramenta para técnicas de reprodução assistida em cervídeos sul-americanos, não havendo informações sobre seus efeitos e protocolos anestésicos seguros para sua realização. Objetivaramse avaliar as possíveis alterações na freqüência cardíaca (FC), respiratória (FR), saturação de oxihemoglobina (SpO2) e temperatura retal (TR) durante a laparoscopia para visualização dos órgãos reprodutivos de seis fêmeas de veado-catingueiro (Mazama gouazoubira) anestesiadas com a associação cetamina (5mg/kg), xilazina (0,3mg/kg), midazolam (0,5mg/kg) e isofluorano. Cada animal, após anestesiado, foi posicionado em decúbito dorsal para realização de duas laparoscopias com insuflação abdominal de CO2 (14,2 ± 2,39mmHg; M ± EPM) com intervalo de 40 dias. Para avaliar os principais eventos da laparoscopia, esta foi dividida em três períodos: animal sem insuflação abdominal (P1), com insuflação abdominal (P2) e insuflação abdominal com os quadris elevados a 45º (P3). O controle foi realizado após 40 dias da última laparoscopia, para isto, cada animal foi novamente anestesiado e mantido em decúbito dorsal por um período de tempo igual ao tempo médio de duração das anestesias realizadas nas laparoscopias, sem que o procedimento laparoscópico fosse realizado. O tempo de anestesia dos controles foi também dividido em P1, P2 e P3, respeitando o tempo médio de duração de cada um destes períodos das laparoscopias. Para análise dos dados foi usado o teste de análise de variância (ANOVA) seguido do teste de Tukey e valores de P<0,05 considerados significativos. Não houve diferença significativa nos parâmetros estudados em nenhum dos períodos estabelecidos para o controle e laparoscopia. Porém, a FR média entre P1 (38,8 ± 4,42) e P3 (32,7 ± 4,81) e a TR média entre P1 (38,2ºC ± 0,17), P2 (37,6ºC ± 0,19) e P3 (37,0ºC ± 0,21) variaram significativamente, independente da laparoscopia. Tais dados permitiram concluir que a laparoscopia não promoveu alterações significativas nos parâmetros avaliados, embora o protocolo anestésico utilizado tenha contribuído para redução da temperatura retal resultando em risco de hipotermia durante a anestesia.
Resumo:
The aim of this study was to evaluate the effect of gamma radiation associated with modified atmosphere on postharvest quality of guavas ‘Pedro Sato’. It was used guavas from the region of Vista Alegre do Alto/São Paulo/Brazil. After harvest, the fruits were immediately transported to the Fruit and Vegetables Laboratory from the Agroindustrial Management and Technology Department, Agronomic Sciences College - UNESP - Botucatu / SP, where they were kept at 10 ° C and 90-95% RH in cold storage, for 28 days. It was used the randomized design, with factorial scheme 5 x 5, three repetitions. The first factor consisted of the following effects: control 1 (without package or irradiation), control 2 (polystyrene package/PS + package low density polyethylene/LDPE and without irradiation), treatment 1 (PS + LDPE and 0.2 kGy ), treatment 2 (PS + LDPE and 0.6 kGy) and treatment 3 (PS + LDPE and 1.0 kGy). The second factor consisted of the evaluation periods: 0, 7, 14, 21 and 28 days. The analyses were: firmness, soluble solids (SS), titratable acidity (TA), maturity index, pH, respiration rate. Concluded that high doses of irradiation promoted a negative effect on physical-chemical characteristics of guava ‘Pedro Sato’, verifying that only the lowest dose associated with modified atmosphere provided fruits with higher quality and acceptability, due to higher maturation rate and soluble solids obtained. Regarding the days of analysis, there were no positive effect of the treatments during storage, where only the early days promoted better values for the variables studied.
Resumo:
The excessive compaction of the soil observed in sod production systems, affects the physical attributes of the soil, which can influence the water infiltration into the soil and hence the rate of soil cover by turfgrasses and time of the sod production. To minimize the effects of soil compacting, some producers use soil preparation equipment that raises the soil on the surface but does not cause excessive roughness which may harm the quality of the sod. Thus, the aim of the present study was to evaluate the infiltration rate and soil cover rate due to different management mechanized in the zoysiagrass sod production. The experimental design had random plots and four replications. The treatments consisted of five mechanized managements of soil: witness (without the use of equipment); coulter blade disc harrow used once (1CB), coulter blade disc harrow used twice (2CB), surface chisel used once (1C), surface chisel and coulter blade disc harrow used once (1C + 1CB). The treatments with 2CB and 1C + 1CB provided greater basic water infiltration speed in the soil and higher rate of soil cover by the turfgrass. The rate of soil cover by turfgrass is positively correlated with water infiltration rate at 133 and 226 DAP, demonstrating the influence of managements used in zoysiagrass sod production and the increment in the infiltration rate of water. Soil preparation utilizing coulter blade disc harrow used twice or surface chisel and coulter blade disc harrow used once is recommended under the conditions this study was done.
Resumo:
This study aimed the avocado ‘Hass’ conservation with the use of radiation. We performed two experiments: Experiment I – fruits irradiated with different doses of cobalt-60 gamma irradiation(0,0; 0,2; 0,4; 0,6 e 1,0 kGy); Experiment II – fruit irradiated by electron accelerator in different doses (0,0; 0,48; 0,8; 1,12 e 1,45 MeV), both maintained at room temperature of 21±1 °C and at relative humidity of 79±5 %. Antioxidant capacity, total phenolic compounds, fresh weight loss, and respiration rate evaluation were performed every three days for 12 days. The experimental design was completely randomized with three replicates per treatment. For statistical analysis, the Tukey test at 5% probability was employed. Under the conditions in which the experiments were performed, the results showed that the gamma radiation use retained the fruits for 12 days, regardless the doses applied. The radiation by electron accelerator use also promote the fruits preservation, regardless the doses employed.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Geociências e Meio Ambiente - IGCE
Resumo:
Araucaria angustifolia, commonly named Araucaria, is a Brazilian native species that is intensively exploited due to its timber quality. Therefore, Araucaria is on the list of species threatened by extinction. Despite the importance of soil for forest production, little is known about the soil properties of the highly fragmented Araucaria forests. This study was designed to investigate the use of chemical and biological properties as indicators of conservation and anthropogenic disturbance of Araucaria forests in different sampling periods. The research was carried out in two State parks of Sao Paulo: Parque Estadual Turistico do Alto do Ribeira and Parque Estadual de Campos de Jordao. The biochemical properties carbon and nitrogen in microbial biomass (MB-C and MB-N), basal respiration (BR), the metabolic quotient (qCO(2)) and the following enzyme activities: beta-glucosidase, urease, and fluorescein diacetate hydrolysis (FDA) were evaluated. The sampling period (dry or rainy season) influenced the results of mainly MB-C, MB-N, BR, and qCO(2). The chemical and biochemical properties, except K content, were sensitive indicators of differences in the conservation and anthropogenic disturbance stages of Araucaria forests. Although these forests differ in biochemical and chemical properties, they are efficient in energy use and conservation, which is shown by their low qCO(2), suggesting an advanced stage of succession.
Resumo:
Araucaria angustifolia, commonly named Araucaria, is a Brazilian native species that is intensively exploited due to its timber quality. Therefore, Araucaria is on the list of species threatened by extinction. Despite the importance of soil for forest production, little is known about the soil properties of the highly fragmented Araucaria forests. This study was designed to investigate the use of chemical and biological properties as indicators of conservation and anthropogenic disturbance of Araucaria forests in different sampling periods. The research was carried out in two State parks of São Paulo: Parque Estadual Turístico do Alto do Ribeira and Parque Estadual de Campos de Jordão. The biochemical properties carbon and nitrogen in microbial biomass (MB-C and MB-N), basal respiration (BR), the metabolic quotient (qCO2) and the following enzyme activities: β-glucosidase, urease, and fluorescein diacetate hydrolysis (FDA) were evaluated. The sampling period (dry or rainy season) influenced the results of mainly MB-C, MB-N, BR, and qCO2. The chemical and biochemical properties, except K content, were sensitive indicators of differences in the conservation and anthropogenic disturbance stages of Araucaria forests. Although these forests differ in biochemical and chemical properties, they are efficient in energy use and conservation, which is shown by their low qCO2, suggesting an advanced stage of succession.
Resumo:
We present a new Ultra Wide Band (UWB) Timed- Array Transmitter System with Beamforming capability for high-resolution remote acquisition of vital signals. The system consists of four identical channels, where each is formed of a serial topology with three modules: programmable delay circuit (PDC or τ), a novel UWB 5th Gaussian Derivative order pulse generator circuit (PG), and a planar Vivaldi antenna. The circuit was designed using 0.18μm CMOS standard process and the planar antenna array was designed with filmconductor on Rogers RO3206 substrate. Spice simulations results showed the pulse generation with 104 mVpp amplitude and 500 ps width. The power consumption is 543 μW, and energy consumption 0.27 pJ per pulse using a 2V power supply at a pulse repetition rate (PRR) of 100 MHz. Electromagnetic simulations results, using CST Microwave (MW) Studio 2011, showed the main lobe radiation with a gain maximum of 13.2 dB, 35.5º x 36.7º angular width, and a beam steering between 17º and -11º for azimuthal (θ) angles and 17º and -18º for elevation (φ) angles at the center frequency of 6 GHz
Resumo:
Maintaining the postharvest quality of whole and fresh-cut fruit during storage and distribution is the major challenge facing fruit industry. For this purpose, industry adopt a wide range of technologies to enable extended shelf-life. Many factors can lead to loss of quality in fresh product, hence the common description of these products as ‘perishable’. As a consequence normal factors such as transpiration and respiration lead ultimately to water loss and senescence of the product. Fruits and vegetables are living commodities and their rate of respiration is of key importance to maintenance of quality. It has been commonly observed that the greater the respiration rate of a product, the shorter the shelf-life. The principal problem for fresh-cut fruit industries is the relative shorter shelf-life of minimally processed fruit (MPF) compared to intact product. This fact is strictly connected with the higher ethylene production of fruit tissue stimulated during fresh-cut processing (peeling, cutting, dipping). 1-Methylcyclopropene (1-MCP) is an inhibitor of ethylene action and several researches have shown its effectiveness on the inhibition of ripening and senescence incidence for intact fruit and consequently on their shelf-life extension. More recently 1-MCP treatment has been tested also for shelf-life extension of MPF but discordant results have been obtained. Considering that in some countries 1-MCP is already a commercial product registered for the use on a number of horticultural products, the main aim of this actual study was to enhance our understanding on the effects of 1-MCP treatment on the quality maintenance of whole and fresh-cut climacteric and non-climacteric fruit (apple, kiwifruit and pineapple). Concerning the effects of 1-MCP on whole fruit, was investigated the effects of a semi-commercial postharvest treatment with 1-MCP on the quality of Pink Lady apples as functions of fruit ripening stage, 1-MCP dose, storage time and also in combination with controlled atmospheres storage in order to better understand what is the relationship among these parameters and if is possible to maximize the 1-MCP treatment to meet the market/consumer needs and then in order to put in the market excellent fruit. To achieve this purpose an incomplete three-level three-factor design was adopted. During the storage were monitored several quality parameters: firmness, ripening index, ethylene and carbon dioxide production and were also performed a sensory evaluations after 6 month of storage. In this study the higher retention of firmness (at the end of storage) was achieved by applying the greatest 1-MCP concentration to fruits with the lowest maturity stage. This finding means that in these semi-commercial conditions we may considerate completely blocked the fruit softening. 1-MCP was able to delay also the ethylene and CO2 production and the maturity parameters (soluble solids content and total acidity). Only in some cases 1-MCP generate a synergistic effect with the CA storage. The results of sensory analyses indicated that, the 1-MCP treatment did not affect the sweetness and whole fruit flavour while had a little effect on the decreasing cut fruit flavour. On the contrary the treated apple was more sour, crisp, firm and juicy. The effects of some treatment (dipping and MAP) on the nutrient stability were also investigated showing that in this case study the adopted treatments did not have drastic effects on the antioxidant compounds on the contrary the dipping may enhance the total antioxidant activity by the accumulation of ascorbic acid on the apple cut surface. Results concerning the effects of 1-MCP in combination with MAP on the quality parameters behaviour of the kiwifruit were not always consistent and clear: in terms of colour maintenance, it seemed to have a synergistic effect with N2O MAP; as far as ripening index is concerned, 1-MCP had a preservative effect, but just for sample packed in air.
Resumo:
The hydrogen production in the green microalga Chlamydomonas reinhardtii was evaluated by means of a detailed physiological and biotechnological study. First, a wide screening of the hydrogen productivity was done on 22 strains of C. reinhardtii, most of which mutated at the level of the D1 protein. The screening revealed for the first time that mutations upon the D1 protein may result on an increased hydrogen production. Indeed, productions ranged between 0 and more than 500 mL hydrogen per liter of culture (Torzillo, Scoma et al., 2007a), the highest producer (L159I-N230Y) being up to 5 times more performant than the strain cc124 widely adopted in literature (Torzillo, Scoma, et al., 2007b). Improved productivities by D1 protein mutants were generally a result of high photosynthetic capabilities counteracted by high respiration rates. Optimization of culture conditions were addressed according to the results of the physiological study of selected strains. In a first step, the photobioreactor (PBR) was provided with a multiple-impeller stirring system designed, developed and tested by us, using the strain cc124. It was found that the impeller system was effectively able to induce regular and turbulent mixing, which led to improved photosynthetic yields by means of light/dark cycles. Moreover, improved mixing regime sustained higher respiration rates, compared to what obtained with the commonly used stir bar mixing system. As far as the results of the initial screening phase are considered, both these factors are relevant to the hydrogen production. Indeed, very high energy conversion efficiencies (light to hydrogen) were obtained with the impeller device, prooving that our PBR was a good tool to both improve and study photosynthetic processes (Giannelli, Scoma et al., 2009). In the second part of the optimization, an accurate analysis of all the positive features of the high performance strain L159I-N230Y pointed out, respect to the WT, it has: (1) a larger chlorophyll optical cross-section; (2) a higher electron transfer rate by PSII; (3) a higher respiration rate; (4) a higher efficiency of utilization of the hydrogenase; (5) a higher starch synthesis capability; (6) a higher per cell D1 protein amount; (7) a higher zeaxanthin synthesis capability (Torzillo, Scoma et al., 2009). These information were gathered with those obtained with the impeller mixing device to find out the best culture conditions to optimize productivity with strain L159I-N230Y. The main aim was to sustain as long as possible the direct PSII contribution, which leads to hydrogen production without net CO2 release. Finally, an outstanding maximum rate of 11.1 ± 1.0 mL/L/h was reached and maintained for 21.8 ± 7.7 hours, when the effective photochemical efficiency of PSII (ΔF/F'm) underwent a last drop to zero. If expressed in terms of chl (24.0 ± 2.2 µmoles/mg chl/h), these rates of production are 4 times higher than what reported in literature to date (Scoma et al., 2010a submitted). DCMU addition experiments confirmed the key role played by PSII in sustaining such rates. On the other hand, experiments carried out in similar conditions with the control strain cc124 showed an improved final productivity, but no constant PSII direct contribution. These results showed that, aside from fermentation processes, if proper conditions are supplied to selected strains, hydrogen production can be substantially enhanced by means of biophotolysis. A last study on the physiology of the process was carried out with the mutant IL. Although able to express and very efficiently utilize the hydrogenase enzyme, this strain was unable to produce hydrogen when sulfur deprived. However, in a specific set of experiments this goal was finally reached, pointing out that other than (1) a state 1-2 transition of the photosynthetic apparatus, (2) starch storage and (3) anaerobiosis establishment, a timely transition to the hydrogen production is also needed in sulfur deprivation to induce the process before energy reserves are driven towards other processes necessary for the survival of the cell. This information turned out to be crucial when moving outdoor for the hydrogen production in a tubular horizontal 50-liter PBR under sunlight radiation. First attempts with laboratory grown cultures showed that no hydrogen production under sulfur starvation can be induced if a previous adaptation of the culture is not pursued outdoor. Indeed, in these conditions the hydrogen production under direct sunlight radiation with C. reinhardtii was finally achieved for the first time in literature (Scoma et al., 2010b submitted). Experiments were also made to optimize productivity in outdoor conditions, with respect to the light dilution within the culture layers. Finally, a brief study of the anaerobic metabolism of C. reinhardtii during hydrogen oxidation has been carried out. This study represents a good integration to the understanding of the complex interplay of pathways that operate concomitantly in this microalga.