856 resultados para sensory attributes
Resumo:
Multisensory interactions are observed in species from single-cell organisms to humans. Important early work was primarily carried out in the cat superior colliculus and a set of critical parameters for their occurrence were defined. Primary among these were temporal synchrony and spatial alignment of bisensory inputs. Here, we assessed whether spatial alignment was also a critical parameter for the temporally earliest multisensory interactions that are observed in lower-level sensory cortices of the human. While multisensory interactions in humans have been shown behaviorally for spatially disparate stimuli (e.g. the ventriloquist effect), it is not clear if such effects are due to early sensory level integration or later perceptual level processing. In the present study, we used psychophysical and electrophysiological indices to show that auditory-somatosensory interactions in humans occur via the same early sensory mechanism both when stimuli are in and out of spatial register. Subjects more rapidly detected multisensory than unisensory events. At just 50 ms post-stimulus, neural responses to the multisensory 'whole' were greater than the summed responses from the constituent unisensory 'parts'. For all spatial configurations, this effect followed from a modulation of the strength of brain responses, rather than the activation of regions specifically responsive to multisensory pairs. Using the local auto-regressive average source estimation, we localized the initial auditory-somatosensory interactions to auditory association areas contralateral to the side of somatosensory stimulation. Thus, multisensory interactions can occur across wide peripersonal spatial separations remarkably early in sensory processing and in cortical regions traditionally considered unisensory.
Resumo:
The influence of relief forms has been studied by several authors and explains the variability in the soil attributes of a landscape. Soil physical attributes depend on relief forms, and their assessment is important in mechanized agricultural systems, such as of sugarcane. This study aimed to characterize the spatial variability in the physical soil attributes and their relationship to the hillslope curvatures in an Alfisol developed from sandstone and growing sugarcane. Grids of 100 x 100 m were delimited in a convex and a concave area. The grids had a regular spacing of 10 x 10 m, and the crossing points of this spacing determined a total of 121 georeferenced sampling points. Samples were collected to determine the physical attributes related to soil aggregates, porosity, bulk density, resistance to penetration and moisture within the 0-0.2 and 0.2-0.4 m depth. Statistical analyses, geostatistics and Student's t-tests were performed with the means of the areas. All attributes, except aggregates > 2 mm in the 0-0.2 m depth and macroporosity at both depths, showed significant differences between the hillslope curvatures. The convex area showed the highest values of the mean weighted diameter, mean geometric diameter, aggregates > 2 mm, 1-2 mm aggregates, total porosity and moisture and lower values of bulk density and resistance to penetration in both depth compared to the concave area. The number of soil attributes with greater spatial variability was higher in the concave area.
Resumo:
The estimation of non available soil variables through the knowledge of other related measured variables can be achieved through pedotransfer functions (PTF) mainly saving time and reducing cost. Great differences among soils, however, can yield non desirable results when applying this method. This study discusses the application of developed PTFs by several authors using a variety of soils of different characteristics, to evaluate soil water contents of two Brazilian lowland soils. Comparisons are made between PTF evaluated data and field measured data, using statistical and geostatistical tools, like mean error, root mean square error, semivariogram, cross-validation, and regression coefficient. The eight tested PTFs to evaluate gravimetric soil water contents (Ug) at the tensions of 33 kPa and 1,500 kPa presented a tendency to overestimate Ug 33 kPa and underestimate Ug1,500 kPa. The PTFs were ranked according to their performance and also with respect to their potential in describing the structure of the spatial variability of the set of measured values. Although none of the PTFs have changed the distribution pattern of the data, all resulted in mean and variance statistically different from those observed for all measured values. The PTFs that presented the best predictive values of Ug33 kPa and Ug1,500 kPa were not the same that had the best performance to reproduce the structure of spatial variability of these variables.
Resumo:
In the State of Rio Grande do Sul, Brazil, flooded rice fields using Patos Lagoon as the source of water for irrigation are subject to be damaged by salinity, since this source is bound to the sea on its southern end. The sensitivity of rice is variable during plant development, being higher in the seedling and reproductive periods. However, there is not enough information about the behavior of plants under salt stress during the course of its development, especially in the vegetative stage. This study evaluated the effect of different levels of salinity of irrigation water on the salinity of soil solution over time and on some plant attributes, during the vegetative stage of rice. The study was conducted in a greenhouse, where seeds of the variety IRGA 424 were sown in pots and irrigated with water with electrical conductivity (ECi) levels of: 0.3, 0.75, 1.5, 3.0 and 4.5 dS m-1; from the tillering initiation (V4) until the panicle initiation (PI). The evaluations made were the electrical conductiviy of soil solution (ECe), the dry biomass of plants and stems, tillering, height and the transpiration of plants. The ECe increased with the ECi over time, and was determined by water transpiration flux in pots. The ECe values at the end of the experiment were high and, in most cases, higher than the critical values for flooded rice. The growth attributes of rice were negatively affected from ECi of 2.0 dS m-1 and ECe of 4.0 dS m-1.
Resumo:
Glutamine synthetase (GS) catalyses the ATP-dependent formation of glutamine from glutamate and ammonia. To determine whether dorsal root ganglion (DRG) cells from chick embryos express the enzyme in vivo or in vitro, GS was detected by immunocytochemical reaction either in vibratome sections of DRG or in dissociated DRG cell cultures. The immunocytochemical detection of GS showed that in vivo the DRG taken from chick embryos at day 10 (E10), E14, E18 or from chickens after hatching were free of any GS-positive ganglion cells; in contrast, in neuron-enriched cultures of DRG cells grown in vitro at E10, virtually all the neuronal cells (98.6 +/- 1.0%) express GS at 3, 5 or 7 days of culture. In mixed DRG cell cultures, only 83.6+/-4.6% of the neurons displayed a GS-immunoreactivity. In both culture conditions, neither the presence of horse serum nor the age of the culture appeared to affect the percentage of neurons which displayed a GS-immunoreactivity. After [3H]glutamine uptake, radioautographs revealed that only 80% of the neurons were labelled in neuron-enriched DRG cell cultures while 96% of the neurons were radioactive in mixed DRG cell cultures. Furthermore the most heavily [3H]glutamine-labelled neurons were exclusively found in mixed DRG cell cultures. Combination of both immunocytochemical detection of GS and radioautography after [3H]glutamine uptake showed that strongly GS-immunostained neurons corresponded to poorly radioactive ones and vice versa. When skeletal muscle extract (ME) was added to DRG cell cultures, the number of GS-positive neurons was reduced to 77.5 +/- 2.5% in neuron-enriched cultures or to 43.6 +/- 3.8% in mixed DRG cell cultures; in both types of culture, the intensity of the neuronal immunostaining was depressed. Furthermore, combined action of ME and non-neuronal cells potentiates the enzyme repression exerted separately by ME or non-neuronal cells. Since GS-immunoreactivity is expressed in DRG cells grown in vitro, but not in vivo, it is suggested that microenvironmental factors influence the expression of GS. More specifically, the repression of GS by primary sensory neurons grown in vitro may be strongly induced by soluble factors present in skeletal muscle, and to a lesser extent in brain, and potentiated by non-neuronal cells.
Resumo:
Soils of the coastal plains of Rio Grande do Sul, Brazil, are affected by salinization, which can hamper the establishment and development of crops in general, including rice. The application of high doses of KCl may aggravate the crop damage, due to the high saline content of this fertilizer. This study aimed to evaluate the effect of K fertilizer management on some properties of rice plant, grown in soils with different sodicity levels, and determine which attribute is best related to yield. The field study was conducted in four Albaqualfs with exchangeable Na percentages of 5.6, 9.0, 21 and 32 %. The management of KCl fertilizer consisted of the application of 90 kg ha-1 K2O broadcast, 90 kg ha-1 K2O in the row and 45 kg ha-1 K2O in the row + 45 kg ha-1 K2O at panicle initiation (PI). Plant density, dry matter evolution, height, SPAD (Soil Plant Analysis Development value indicating relative chlorophyll contents) index, tiller mass, 1,000-grain weight, panicle length and grain yield were evaluated. The plant density was damaged by application of K fertilizer in the row, especially at full dose (90 kg ha-1), at three sodicity levels, resulting in loss in biomass accumulation in later stages, affecting the crop yield, even at the lowest level of soil sodicity (5.6 %). All properties were correlated with yield; the highest positive correlation was found with plant density and shoot dry matter at full flowering, and a negative correlation with panicle length.
Resumo:
In prehistoric times, innumerous shell middens, called "sambaquis", consisting mainly of remains of marine organisms, were built along the Brazilian coast. Although the scientific community took interest in these anthropic formations, especially since the nineteenth century, their pedological context is still poorly understood. The purpose of this study was to characterize and identify the physical and chemical changes induced by soil-forming processes, as well as to compare the morphology of shell midden soils with other, already described, anthropogenic soils of Brazil. Four soil profiles developed from shell middens in the Região dos Lagos - RJ were morphologically described and the physical and chemical properties determined. The chemical analysis showed that Ca, Mn, Mg, and particularly P and Zn are indicators of anthropic horizons of midden soils, as in the Amazon Dark Earths (Terras Pretas de Índio). After the deposition of P-rich material, P reaction and leaching can mask or disturb the evidence of in situ man-made strata, but mineralogical and chemical studies of phosphate forms can elucidate the apparent complexity. Lower phosphate-rich strata without direct anthropic inputs indicate P leaching and precipitation in secondary forms. The total and bioavailable contents of Ca, Mg, Zn, Mn, Cu, P, and organic C of midden soils were much higher than of regional soils without influence of ancient human settlements, demonstrating that the high fertility persisted for long periods, at some sites for more than 4000 years. The physical analysis showed that wind-blown sand contributed significantly to increase the sand fraction in the analyzed soils (texture classes sand, sandy loam and sandy clay loam) and that the aeolian sand accumulation occurred simultaneously with the midden formation.
Resumo:
Studies on sewage sludge (SS) have confirmed the possibilities of using this waste as fertilizer and/or soil conditioner in crop production areas. Despite restrictions with regard to the levels of potentially toxic elements (PTE) and pathogens, it is believed that properly treated SS with low PTE levels, applied to soil at adequate rates, may improve the soil chemical and microbiological properties. This study consisted of a long-term field experiment conducted on a Typic Haplorthox (eutroferric Red Latosol) treated with SS for seven successive years for maize production, to evaluate changes in the soil chemical and microbiological properties. The treatments consisted of two SS rates (single and double dose of the crop N requirement) and a mineral fertilizer treatment. Soil was sampled in the 0-0.20 m layer and analyzed for chemical properties (organic C, pH, P, K, Ca, Mg, CEC, B, Cu, Fe, Mn, Zn, Cd, Ni, and Pb) and microbiological properties (basal respiration, microbial biomass activity, microbial biomass C, metabolic quotient, microbial quotient, and protease and dehydrogenase enzyme activities). Successive SS applications to soil increased the macro- and micronutrient availability, but the highest SS dose reduced the soil pH significantly, indicating a need for periodic corrections. The SS treatments also affected soil microbial activity and biomass negatively. There were no significant differences among treatments for maize grain yield. After seven annual applications of the recommended sludge rate, the heavy metal levels in the soil had not reached toxic levels.
Resumo:
One of the main negative anthropic effects on soil is the formation of crusts, resulting in soil degradation. This process of physical origin reduces soil water infiltration, causing increased runoff and consequently soil losses, water erosion and/or soil degradation. The study and monitoring of soil crusts is important for soil management and conservation, mainly in tropical regions where research is insufficient to explain how soil crusts are formed and how they evolve. The purpose of this study was to monitor these processes on soils with different particle size distributions. Soil crusts on a sandy/sandy loam Argissolo Vermelho-Amarelo (Typic Hapludult), sandy loam Latossolo Vermelho-Amarelo (Typic Hapludox) and a clayey Nitossolo Vermelho eutroférrico (Rhodic Kandiudalf) were monitored. The soil was sampled and data collected after 0, 3, 5 and 10 rain storms with intensities above 25 mm h-1, from December 2008 to May 2009. Soil chemical and particle size distribution analysis were performed. The changes caused by rainfall were monitored by determining the soil roughness, hydraulic conductivity and soil water retention curves and by micromorphological analysis. Reduced soil roughness and crust formation were observed for all soils during the monitored rainfall events. However, contrary to what was expected according to the literature, crust formation was not always accompanied by reductions in total porosity, hydraulic conductivity and soil water retention.
Resumo:
Soil properties play an important role in spatial variability of crop yield. However, a low spatial correlation has generally been observed between maps of crop yield and of soil properties. The objectives of the present investigation were to assess the spatial pattern variability of soil properties and of corn yield at the same sampling intensity, and evaluate its cause-and-effect relationships. The experimental site was structured in a grid of 100 referenced points, spaced at 10 m intervals along four parallel 250 m long rows spaced 4.5 m apart. Thus, points formed a rectangle containing four columns and 25 rows. Therefore, each sampling cell encompassed an area of 45 m² and consisted of five 10 m long crop rows, in which the referenced points represented the center. Samples were taken from the layers 0-0.1 m and 0.1-0.2 m. Soil physical and chemical properties were evaluated. Statistical analyses consisted of data description and geostatistics. The spatial dependence of corn yield and soil properties was confirmed. The hypothesis of this study was confirmed, i.e., when sampling the soil to determine the values of soil characteristics at similar to sampling intensity as for crop yield assessments, correlations between the spatial distribution of soil characteristics and crop yield were observed. The spatial distribution pattern of soil properties explained 65 % of the spatial distribution pattern of corn yield. The spatial distribution pattern of clay content and percentage of soil base saturation explained most of the spatial distribution pattern of corn yield.
Resumo:
During the ontogenesis of dorsal root ganglia (DRG), the immunoreactivity to substance P (SP) and calbindin D-28k (CaBP) appears in chickens at embryonic day 5 (E5) and E10 respectively. To establish the birthdates of primary sensory neurons expressing SP or CaBP, chick embryos were given repetitive intra-amniotic injections of [3H]-thymidine. The neuroblasts giving rise to SP-expressing neurons were labeled up to E6 while those generating CaBP-immunoreactive neurons stopped to incorporate [3H]-thymidine before E5.5. This finding indicates that neurons exhibiting distinct phenotypes may originate from neuroblasts which arrest to proliferate at close but distinct stages of development. To determine whether SP and CaBP are co-expressed or not in DRG neurons, chick embryos at E12, E18, and chickens two weeks after hatching were perfused and fixed to detect simultaneously SP- and CaBP-immunoreactivity in DRG sections. The results showed that SP and CaBP were transiently co-expressed by a subset of neurons at E12. Later, however, the SP-immunoreactivity was gradually lost by these ganglion cells, so that the SP- and CaBP-immunoreaction defined two distinct neuronal subpopulations after hatching. In conclusion, most CaBP-immunoreactive DRG cells derive from a subset of neurons in which SP and CaBP are transiently co-localized.
Resumo:
The effects of the thyroid hormones on target cells are mediated through nuclear T3 receptors. In the peripheral nervous system, nuclear T3 receptors were previously detected with the monoclonal antibody 2B3 mAb in all the primary sensory neurons throughout neuronal life and in peripheral glia at the perinatal period only (Eur. J. Neurosci. 5, 319, 1993). To determine whether these nuclear T3 receptors correspond to functional ones able to bind T3, cryostat sections and in vitro cell cultures of dorsal root ganglion (DRG) or sciatic nerve were incubated with 0.1 nM [125I]-labeled T3, either alone to visualize the total T3-binding sites or added with a 10(3) fold excess of unlabeled T3 to estimate the part due to the non-specific T3-binding. After glutaraldehyde fixation, radioautography showed that the specific T3-binding sites were largely prevalent. The T3-binding capacity of peripheral glia in DRG and sciatic nerve was restricted to the perinatal period in vivo and to Schwann cells cultured in vitro. In all the primary sensory neurons, specific T3-binding sites were disclosed in foetal as well as adult rats. The detection of the T3-binding sites in the nucleus indicated that the nuclear T3 receptors are functional. Moreover the concomitant presence of both T3-binding sites and T3 receptors alpha isoforms in the perikaryon of DRG neurons infers that: 1) [125I]-labeled T3 can be retained on the T3-binding 'E' domain of nascent alpha 1 isoform molecules newly-synthesized on the perikaryal ribosomes; 2) the alpha isoforms translocated to the nucleus are modified by posttranslational changes and finally recognized by 2B3 mAb as nuclear T3 receptor. In conclusion, the radioautographic visualization of the T3-binding sites in peripheral neurons and glia confirms that the nuclear T3 receptors are functional and contributes to clarify the discordant intracellular localization provided by the immunocytochemical detection of nuclear T3 receptors and T3 receptor alpha isoforms.
Resumo:
INTRODUCTION: Quantitative sensory testing (QST) is widely used in human research to investigate the integrity of the sensory function in patients with pain of neuropathic origin, or other causes such as low back pain. Reliability of QST has been evaluated on both sides of the face, hands and feet as well as on the trunk (Th3-L3). In order to apply these tests on other body-parts such as the lower lumbar spine, it is important first to establish reliability on healthy individuals. The aim of this study was to investigate intra-rater reliability of thermal QST in healthy adults, on two sites within the L5 dermatome of the lumbar spine and lower extremity. METHODS: Test-retest reliability of thermal QST was determined at the L5-level of the lumbar spine and in the same dermatome on the lower extremity in 30 healthy persons under 40 years of age. Results were analyzed using descriptive statistics and intraclass correlation coefficient (ICC). Values were compared to normative data, using Z-transformation. RESULTS: Mean intraindividual differences were small for cold and warm detection thresholds but larger for pain thresholds. ICC values showed excellent reliability for warm detection and heat pain threshold, good-to-excellent reliability for cold pain threshold and fair-to-excellent reliability for cold detection threshold. ICC had large ranges of confidence interval (95%). CONCLUSION: In healthy adults, thermal QST on the lumbar spine and lower extremity demonstrated fair-to-excellent test-retest reliability.
Resumo:
Calbindin and calretinin are two homologous calcium-binding proteins that are expressed by subpopulations of primary sensory neurons. In the present work, we have studied the distribution of the neurons expressing calbindin and calretinin in dorsal root ganglia of the rat and their peripheral projections. Calbindin and calretinin immunoreactivities were expressed by subpopulations of large- and small-sized primary sensory neurons and colocalized in a majority of large-sized ones. The axons emerging from calbindin- or calretinin-immunoreactive neurons innervated muscle spindles, Pacini corpuscles and subepidermal lamellar corpuscles in the glabrous skin, formed palisades of lanceolate endings around hairs and vibrissae, and gave rise to intraepidermal nerve endings in the digital skin. Since most of these afferents are considered as rapidly adapting mechanoreceptors, it is concluded that calbindin- or calretinin-expressing neurons innervate particular mechanoreceptors that display physiological characteristics of rapid adaptation to stimuli.
Resumo:
Sensory neuronopathies (SNNs) encompass paraneoplastic, infectious, dysimmune, toxic, inherited, and idiopathic disorders. Recently described diagnostic criteria allow SNN to be differentiated from other forms of sensory neuropathy, but there is no validated strategy based on routine clinical investigations for the etiological diagnosis of SNN. In a multicenter study, the clinical, biological, and electrophysiological characteristics of 148 patients with SNN were analyzed. Multiple correspondence analysis and logistic regression were used to identify patterns differentiating between forms of SNNs with different etiologies. Models were constructed using a study population of 88 patients and checked using a test population of 60 cases. Four patterns were identified. Pattern A, with an acute or subacute onset in the four limbs or arms, early pain, and frequently affecting males over 60 years of age, identified mainly paraneoplastic, toxic, and infectious SNN. Pattern B identified patients with progressive SNN and was divided into patterns C and D, the former corresponding to patients with inherited or slowly progressive idiopathic SNN with severe ataxia and electrophysiological abnormalities and the latter to patients with idiopathic, dysimmune, and sometimes paraneoplastic SNN with a more rapid course than in pattern C. The diagnostic strategy based on these patterns correctly identified 84/88 and 58/60 patients in the study and test populations, respectively.