957 resultados para segment QT


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider the problem of supporting goal-level, independent andparallelism (IAP) in the presence of non-determinism. IAP is exploited when two or more goals which will not interfere at run time are scheduled for simultaneous execution. Backtracking over non-deterministic parallel goals runs into the wellknown trapped goal and garbage slot problems. The proposed solutions for these problems generally require complex low-level machinery which makes systems difficult to maintain and extend, and in some cases can even affect sequential execution performance. In this paper we propose a novel solution to the problem of trapped nondeterministic goals and garbage slots which is based on a single stack reordering operation and offers several advantages over previous proposals. While the implementation of this operation itself is not simple, in return it does not impose constraints on the scheduler. As a result, the scheduler and the rest of the run-time machinery can safely ignore the trapped goal and garbage slot problems and their implementation is greatly simplified. Also, standard sequential execution remains unaffected. In addition to describing the solution we report on an implementation and provide performance results. We also suggest other possible applications of the proposed approach beyond parallel execution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Axonal outgrowth and the formation of the axon initial segment (AIS) are early events in the acquisition of neuronal polarity. The AIS is characterized by a high concentration of voltage-dependent sodium and potassium channels. However, the specific ion channel subunits present and their precise localization in this axonal subdomain vary both during development and among the types of neurons, probably determining their firing characteristics in response to stimulation. Here, we characterize the developmental expression of different subfamilies of voltage-gated potassium channels in the AISs of cultured mouse hippocampal neurons, including subunits Kv1.2, Kv2.2 and Kv7.2. In contrast to the early appearance of voltage-gated sodium channels and the Kv7.2 subunit at the AIS, Kv1.2 and Kv2.2 subunits were tethered at the AIS only after 10 days in vitro. Interestingly, we observed different patterns of Kv1.2 and Kv2.2 subunit expression, with each confined to distinct neuronal populations. The accumulation of Kv1.2 and Kv2.2 subunits at the AIS was dependent on ankyrin G tethering, it was not affected by disruption of the actin cytoskeleton and it was resistant to detergent extraction, as described previously for other AIS proteins. This distribution of potassium channels in the AIS further emphasizes the heterogeneity of this structure in different neuronal populations, as proposed previously, and suggests corresponding differences in action potential regulation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The cisternal organelle that resides in the axon initial segment (AIS) of neocortical and hippocampal pyramidal cells is thought to be involved in regulating the Ca(2+) available to maintain AIS scaffolding proteins, thereby preserving normal AIS structure and function. Through immunocytochemistry and correlative light and electron microscopy, we show here that the actin-binding protein ?-actinin is present in the typical cistenal organelle of rodent pyramidal neurons as well as in a large structure in the AIS of a subpopulation of layer V pyramidal cells that we have called the "giant saccular organelle." Indeed, this localization of ?-actinin in the AIS is dependent on the integrity of the actin cytoskeleton. Moreover, in the cisternal organelle of cultured hippocampal neurons, ?-actinin colocalizes extensively with synaptopodin, a protein that interacts with both actin and ?-actinin, and they appear concomitantly during the development of these neurons. Together, these results indicate that ?-actinin and the actin cytoskeleton are important components of the cisternal organelle that are probably required to stabilize the AIS.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cosmids from the 1A3–1A10 region of the complete miniset were individually subcloned by using the vector M13 mp18. Sequences of each cosmid were assembled from about 400 DNA fragments generated from the ends of these phage subclones and merged into one 189-kb contig. About 160 ORFs identified by the CodonUse program were subjected to similarity searches. The biological functions of 80 ORFs could be assigned reliably by using the WIT and Magpie genome investigation tools. Eighty percent of these recognizable ORFs were organized in functional clusters, which simplified assignment decisions and increased the strength of the predictions. A set of 26 genes for cobalamin biosynthesis, genes for polyhydroxyalkanoic acid metabolism, DNA replication and recombination, and DNA gyrase were among those identified. Most of the ORFs lacking significant similarity with reference databases also were grouped. There are two large clusters of these ORFs, one located between 45 and 67 kb of the map, and the other between 150 and 183 kb. Nine of the loosely identified ORFs (of 15) of the first of these clusters match ORFs from phages or transposons. The other cluster also has four ORFs of possible phage origin.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The congenital long QT syndrome (LQTS) is an inherited disorder characterized by a prolonged cardiac action potential. This delay in cellular repolarization can lead to potentially fatal arrhythmias. One form of LQTS (LQT3) has been linked to the human cardiac voltage-gated sodium channel gene (SCN5A). Three distinct mutations have been identified in the sodium channel gene. The biophysical and functional characteristics of each of these mutant channels were determined by heterologous expression of a recombinant human heart sodium channel in a mammalian cell line. Each mutation caused a sustained, non-inactivating sodium current amounting to a few percent of the peak inward sodium current, observable during long (>50 msec) depolarizations. The voltage dependence and rate of inactivation were altered, and the rate of recovery from inactivation was changed compared with wild-type channels. These mutations in diverse regions of the ion channel protein, all produced a common defect in channel gating that can cause the long QT phenotype. The sustained inward current caused by these mutations will prolong the action potential. Furthermore, they may create conditions that promote arrhythmias due to prolonged depolarization and the altered recovery from inactivation. These results provide insights for successful intervention in the disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The voltage-gated sodium channel is the site of action of more than six classes of neurotoxins and drugs that alter its function by interaction with distinct, allosterically coupled receptor sites. Batrachotoxin (BTX) is a steroidal alkaloid that binds to neurotoxin receptor site 2 and causes persistent activation. BTX binding is inhibited allosterically by local anesthetics. We have investigated the interaction of BTX with amino acid residues I1760, F1764, and Y1771, which form part of local anesthetic receptor site in transmembrane segment IVS6 of type IIA sodium channels. Alanine substitution for F1764 (mutant F1764A) reduces tritiated BTX-A-20-α-benzoate binding affinity, causing a 60-fold increase in Kd. Alanine substitution for I1760, which is adjacent to F1764 in the predicted IVS6 transmembrane alpha helix, causes only a 4-fold increase in Kd. In contrast, mutant Y1771A shows no change in BTX binding affinity. For wild-type and mutant Y1771A, BTX shifted the voltage for half-maximal activation ≈40 mV in the hyperpolarizing direction and increased the percentage of noninactivating sodium current to ≈60%. In contrast, these BTX effects were eliminated completely for the F1764A mutant and were reduced substantially for mutant I1760A. Our data suggest that the BTX receptor site shares overlapping but nonidentical molecular determinants with the local anesthetic receptor site in transmembrane segment IVS6 as well as having unique molecular determinants in transmembrane segment IS6, as demonstrated in previous work. Evidently, BTX conforms to a domain–interface allosteric model of ligand binding and action, as previously proposed for calcium agonist and antagonist drugs acting on l-type calcium channels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The NH2-terminal domains of membrane-bound sterol regulatory element-binding proteins (SREBPs) are released into the cytosol by regulated intramembrane proteolysis, after which they enter the nucleus to activate genes encoding lipid biosynthetic enzymes. Intramembrane proteolysis is catalyzed by Site-2 protease (S2P), a hydrophobic zinc metalloprotease that cleaves SREBPs at a membrane-embedded leucine-cysteine bond. In the current study, we use domain-swapping methods to localize the residues within the SREBP-2 membrane-spanning segment that are required for cleavage by S2P. The studies reveal a requirement for an asparagine-proline sequence in the middle third of the transmembrane segment. We propose a model in which the asparagine-proline sequence serves as an NH2-terminal cap for a portion of the transmembrane α-helix of SREBP, allowing the remainder of the α-helix to unwind partially to expose the peptide bond for cleavage by S2P.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study addresses the properties of a newly identified internal ribosome entry site (IRES) contained within the mRNA of the homeodomain protein Gtx. Sequential deletions of the 5′ untranslated region (UTR) from either end did not define distinct IRES boundaries; when five nonoverlapping UTR fragments were tested, four had IRES activity. These observations are consistent with other cellular IRES analyses suggesting that some cellular IRESes are composed of segments (IRES modules) that independently and combinatorially contribute to overall IRES activity. We characterize a 9-nt IRES module from the Gtx 5′ UTR that is 100% complementary to the 18S rRNA at nucleotides 1132–1124. In previous work, we demonstrated that this mRNA segment could be crosslinked to its complement within intact 40S subunits. Here we show that increasing the number of copies of this IRES module in the intercistronic region of a dicistronic mRNA strongly enhances IRES activity in various cell lines. Ten linked copies increased IRES activity up to 570-fold in Neuro 2a cells. This level of IRES activity is up to 63-fold greater than that obtained by using the well characterized encephalomyocarditis virus IRES when tested in the same assay system. When the number of nucleotides between two of the 9-nt Gtx IRES modules was increased, the synergy between them decreased. In light of these findings, we discuss possible mechanisms of ribosome recruitment by cellular mRNAs, address the proposed role of higher order RNA structures on cellular IRES activity, and suggest parallels between IRES modules and transcriptional enhancer elements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Expression patterns of six homeobox containing genes in a model chelicerate, the oribatid mite Archegozetes longisetosus, were examined to establish homology of chelicerate and insect head segments and to investigate claims that the chelicerate deutocerebral segment has been reduced or lost. engrailed (en) expression, which has been used to demonstrate the presence of segments in insects, fails to demonstrate a reduced deutocerebral segment. Expression patterns of the chelicerate homologs of the Drosophila genes Antennapedia (Antp), Sex combs reduced (Scr), Deformed (Dfd), proboscipedia (pb), and orthodenticle (otd) confirm direct correspondence of head segments. The chelicerate deutocerebral segment has not been reduced or lost. We make further inferences concerning the evolution of heads and Hox genes in arthropods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sympathetic preganglionic neurons exhibit segment-specific projections. Preganglionic neurons located in rostral spinal segments project rostrally within the sympathetic chain, those located in caudal spinal segments project caudally, and those in midthoracic segments project either rostrally or caudally in segmentally graded proportions. Moreover, rostrally and caudally projecting preganglionic neurons are skewed toward the rostral and caudal regions, respectively, of each midthoracic segment. The mechanisms that establish these segment-specific projections are unknown. Here we show that experimental manipulation of retinoid signaling in the chicken embryo alters the segment-specific pattern of sympathetic preganglionic projections and that this effect is mediated by the somitic mesoderm. Application of exogenous retinoic acid to a single rostral thoracic somite decreases the number of rostrally projecting preganglionic neurons at that level. Conversely, disrupting endogenous synthesis of retinoic acid in a single caudal thoracic somite increases the number of rostrally projecting preganglionic neurons at that level. The number of caudally projecting neurons does not change in either case, indicating that the effect is specific for rostrally projecting preganglionic neurons. These results indicate that the sizes of the rostrally and caudally projecting populations may be independently regulated by different factors. Opposing gradients of such factors along the longitudinal axis of the thoracic region of the embryo could be sufficient, in combination, to determine the segment-specific identity of preganglionic projections.